Integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity

被引:0
|
作者
Williams, Robert J. [1 ]
Brintz, Ben J. [1 ,2 ]
Dos Santos, Gabriel Ribeiro [3 ]
Huang, Angkana T. [3 ,4 ]
Buddhari, Darunee [4 ]
Kaewhiran, Surachai [5 ]
Iamsirithaworn, Sopon [5 ]
Rothman, Alan L. [6 ]
Thomas, Stephen [7 ]
Farmer, Aaron [4 ]
Fernandez, Stefan [4 ]
Cummings, Derek A. T. [8 ,9 ]
Anderson, Kathryn B. [4 ,7 ]
Salje, Henrik [3 ]
Leung, Daniel T. [1 ,10 ]
机构
[1] Univ Utah, Dept Internal Med, Div Infect Dis, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Internal Med, Div Epidemiol, Salt Lake City, UT USA
[3] Univ Cambridge, Dept Genet, Cambridge, England
[4] Armed Forces Res Inst Med Sci, Dept Virol, Bangkok, Thailand
[5] Minist Publ Hlth, Nonthaburi, Thailand
[6] Univ Rhode Isl, Inst Immunol & Informat, Dept Cell & Mol Biol, Providence, RI USA
[7] SUNY Upstate Med Univ, Dept Microbiol & Immunol, Syracuse, NY USA
[8] Univ Florida, Dept Biol, Gainesville, FL USA
[9] Univ Florida, Emerging Pathogens Inst, Gainesville, FL USA
[10] Univ Utah, Dept Pathol, Div Microbiol & Immunol, Salt Lake City, UT 84112 USA
基金
欧洲研究理事会; 美国国家卫生研究院;
关键词
BLOOD-STREAM INFECTIONS; AEDES-AEGYPTI; RANDOM FOREST; ADULTS;
D O I
10.1126/sciadv.adj9786
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The differentiation of dengue virus (DENV) infection, a major cause of acute febrile illness in tropical regions, from other etiologies, may help prioritize laboratory testing and limit the inappropriate use of antibiotics. While traditional clinical prediction models focus on individual patient-level parameters, we hypothesize that for infectious diseases, population-level data sources may improve predictive ability. To create a clinical prediction model that integrates patient-extrinsic data for identifying DENV among febrile patients presenting to a hospital in Thailand, we fit random forest classifiers combining clinical data with climate and population-level epidemiologic data. In cross-validation, compared to a parsimonious model with the top clinical predictors, a model with the addition of climate data, reconstructed susceptibility estimates, force of infection estimates, and a recent case clustering metric significantly improved model performance.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A methodological framework to predict the individual and population-level distributions from tracking data
    Chambault, Philippine
    Hattab, Tarek
    Mouquet, Pascal
    Bajjouk, Touria
    Jean, Claire
    Ballorain, Katia
    Ciccione, Stephane
    Dalleau, Mayeul
    Bourjea, Jerome
    ECOGRAPHY, 2021, 44 (05) : 766 - 777
  • [42] Population-level and Individual-level Bother of Lower Urinary Tract Symptoms Among 30-to 80-year-old Men
    Poyhonen, Antti
    Auvinen, Anssi
    Hakkinen, Jukka T.
    Koskimaki, Juha
    Tammela, Teuvo L. J.
    UROLOGY, 2016, 95 : 164 - 170
  • [43] Integrating population- and individual-level information in a movement model of Yellowstone bison
    Geremia, C.
    White, P. J.
    Hoeting, J. A.
    Wallen, R. L.
    Watson, F. G. R.
    Blanton, D.
    Hobbs, N. T.
    ECOLOGICAL APPLICATIONS, 2014, 24 (02) : 346 - 362
  • [44] Can we learn individual-level treatment policies from clinical data?
    Shalit, Uri
    BIOSTATISTICS, 2020, 21 (02) : 359 - 362
  • [45] THE CHALLENGES AND OPPORTUNITIES OF BIG DATA FOR INDIVIDUAL-LEVEL PREDICTION: ILLUSTRATION FROM THE ABCD STUDY
    Barch, Deanna M.
    JOURNAL OF THE AMERICAN ACADEMY OF CHILD AND ADOLESCENT PSYCHIATRY, 2023, 62 (10): : S146 - S147
  • [46] Improved genetic prediction of complex traits from individual-level data or summary statistics
    Zhang, Qianqian
    Prive, Florian
    Vilhjalmsson, Bjarni
    Speed, Doug
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [47] Improved genetic prediction of complex traits from individual-level data or summary statistics
    Qianqian Zhang
    Florian Privé
    Bjarni Vilhjálmsson
    Doug Speed
    Nature Communications, 12
  • [48] Genomic Prediction Using Individual-Level Data and Summary Statistics from Multiple Populations
    Vandenplas, Jeremie
    Calus, Mario P. L.
    Gorjanc, Gregor
    GENETICS, 2018, 210 (01) : 53 - 69
  • [49] Individual-Level HIV Risk versus Population-level Impact of Risk Compensation after PrEP Initiation among MSM in the US: A Modeling Study
    Jenness, Samuel
    Goodreau, Steven
    Rosenberg, Eli
    Sharma, Akshay
    Hoover, Karen
    Smith, Dawn
    Sullivan, Patrick
    AIDS RESEARCH AND HUMAN RETROVIRUSES, 2016, 32 : 292 - 292
  • [50] PopNet: Real-Time Population-Level Disease Prediction with Data Latency
    Gao, Junyi
    Xiao, Cao
    Glass, Lucas M.
    Sun, Jimeng
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 2552 - 2562