Integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity

被引:0
|
作者
Williams, Robert J. [1 ]
Brintz, Ben J. [1 ,2 ]
Dos Santos, Gabriel Ribeiro [3 ]
Huang, Angkana T. [3 ,4 ]
Buddhari, Darunee [4 ]
Kaewhiran, Surachai [5 ]
Iamsirithaworn, Sopon [5 ]
Rothman, Alan L. [6 ]
Thomas, Stephen [7 ]
Farmer, Aaron [4 ]
Fernandez, Stefan [4 ]
Cummings, Derek A. T. [8 ,9 ]
Anderson, Kathryn B. [4 ,7 ]
Salje, Henrik [3 ]
Leung, Daniel T. [1 ,10 ]
机构
[1] Univ Utah, Dept Internal Med, Div Infect Dis, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Internal Med, Div Epidemiol, Salt Lake City, UT USA
[3] Univ Cambridge, Dept Genet, Cambridge, England
[4] Armed Forces Res Inst Med Sci, Dept Virol, Bangkok, Thailand
[5] Minist Publ Hlth, Nonthaburi, Thailand
[6] Univ Rhode Isl, Inst Immunol & Informat, Dept Cell & Mol Biol, Providence, RI USA
[7] SUNY Upstate Med Univ, Dept Microbiol & Immunol, Syracuse, NY USA
[8] Univ Florida, Dept Biol, Gainesville, FL USA
[9] Univ Florida, Emerging Pathogens Inst, Gainesville, FL USA
[10] Univ Utah, Dept Pathol, Div Microbiol & Immunol, Salt Lake City, UT 84112 USA
基金
欧洲研究理事会; 美国国家卫生研究院;
关键词
BLOOD-STREAM INFECTIONS; AEDES-AEGYPTI; RANDOM FOREST; ADULTS;
D O I
10.1126/sciadv.adj9786
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The differentiation of dengue virus (DENV) infection, a major cause of acute febrile illness in tropical regions, from other etiologies, may help prioritize laboratory testing and limit the inappropriate use of antibiotics. While traditional clinical prediction models focus on individual patient-level parameters, we hypothesize that for infectious diseases, population-level data sources may improve predictive ability. To create a clinical prediction model that integrates patient-extrinsic data for identifying DENV among febrile patients presenting to a hospital in Thailand, we fit random forest classifiers combining clinical data with climate and population-level epidemiologic data. In cross-validation, compared to a parsimonious model with the top clinical predictors, a model with the addition of climate data, reconstructed susceptibility estimates, force of infection estimates, and a recent case clustering metric significantly improved model performance.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Combining Clinical and Population-Level Data to Understand the Health of Neighborhoods
    Chambers, Earle C.
    Wong, Barbara C.
    Riley, Rachael W.
    Hollingsworth, Nicole
    Blank, Arthur E.
    Myers, Christa
    Bedell, Jane
    Selwyn, Peter A.
    AMERICAN JOURNAL OF PUBLIC HEALTH, 2015, 105 (03) : 510 - 512
  • [32] Integration of individualized and population-level molecular epidemiology data to model COVID-19 outcomes
    Ling-Hu, Ted
    Simons, Lacy M.
    Dean, Taylor J.
    Rios-Guzman, Estefany
    Caputo, Matthew T.
    Alisoltani, Arghavan
    Qi, Chao
    Malczynski, Michael
    Blanke, Timothy
    Jennings, Lawrence J.
    Ison, Michael G.
    Achenbach, Chad J.
    Larkin, Paige M.
    Kaul, Karen L.
    Lorenzo-Redondo, Ramon
    Ozer, Egon A.
    Hultquist, Judd F.
    CELL REPORTS MEDICINE, 2024, 5 (01)
  • [33] Comparison of Methods to Generalize Randomized Clinical Trial Results Without Individual-Level Data for the Target Population
    Hong, Jin-Liern
    Webster-Clark, Michael
    Funk, Michele Jonsson
    Sturmer, Til
    Dempster, Sara E.
    Cole, Stephen R.
    Herr, Iksha
    LoCasale, Robert
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2019, 188 (02) : 426 - 437
  • [34] State-level rurality and cigarette smoking-associated cancer incidence and mortality: Do individual-level trends translate to population-level outcomes?
    Villanti, Andrea C.
    Klemperer, Elias M.
    Sprague, Brian L.
    Ahern, Thomas P.
    PREVENTIVE MEDICINE, 2021, 152
  • [35] Improved prediction of complex traits from individual-level data and summary statistics
    Speed, Doug
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2022, 30 (SUPPL 1) : 28 - 28
  • [36] Evaluation of thyroid test utilization through analysis of population-level data
    Gill, Jasmine
    Barakauskas, Vilte E.
    Thomas, Dylan
    Rodriguez-Capote, Karina
    Higgins, Trefor
    Zhang, Don
    VanSpronsen, Amanda
    Babenko, Oksana
    Martindale, Roberta
    Estey, Mathew P.
    CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2017, 55 (12) : 1898 - 1906
  • [37] Developing a COVID-19 mortality risk prediction model when individual-level data are not available
    Noam Barda
    Dan Riesel
    Amichay Akriv
    Joseph Levy
    Uriah Finkel
    Gal Yona
    Daniel Greenfeld
    Shimon Sheiba
    Jonathan Somer
    Eitan Bachmat
    Guy N. Rothblum
    Uri Shalit
    Doron Netzer
    Ran Balicer
    Noa Dagan
    Nature Communications, 11
  • [38] Developing a COVID-19 mortality risk prediction model when individual-level data are not available
    Barda, Noam
    Riesel, Dan
    Akriv, Amichay
    Levy, Joseph
    Finkel, Uriah
    Yona, Gal
    Greenfeld, Daniel
    Sheiba, Shimon
    Somer, Jonathan
    Bachmat, Eitan
    Rothblum, Guy N.
    Shalit, Uri
    Netzer, Doron
    Balicer, Ran
    Dagan, Noa
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [39] ESTIMATING WITHIN-HOST DYNAMICS OF DENGUE VIRUS SEROTYPES USING TWELVE YEARS OF INDIVIDUAL-LEVEL LONGITUDINAL SEROLOGICAL DATA
    Reiner, Robert C.
    Stoddard, Steven T.
    Forshey, Brett M.
    Guevara, Carolina
    Hontz, Robert
    Halsey, Eric S.
    Morrison, Amy
    Kochel, Tadeusz J.
    Scott, Thomas W.
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2015, 93 (04): : 180 - 180
  • [40] Beyond Population-Level Targets for Drug Concentrations: Precision Dosing Needs Individual-Level Targets that Include Superior Biomarkers of Drug Responses
    Polasek, Thomas M.
    Peck, Richard W.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2024, 116 (03) : 602 - 612