Integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity

被引:0
|
作者
Williams, Robert J. [1 ]
Brintz, Ben J. [1 ,2 ]
Dos Santos, Gabriel Ribeiro [3 ]
Huang, Angkana T. [3 ,4 ]
Buddhari, Darunee [4 ]
Kaewhiran, Surachai [5 ]
Iamsirithaworn, Sopon [5 ]
Rothman, Alan L. [6 ]
Thomas, Stephen [7 ]
Farmer, Aaron [4 ]
Fernandez, Stefan [4 ]
Cummings, Derek A. T. [8 ,9 ]
Anderson, Kathryn B. [4 ,7 ]
Salje, Henrik [3 ]
Leung, Daniel T. [1 ,10 ]
机构
[1] Univ Utah, Dept Internal Med, Div Infect Dis, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Internal Med, Div Epidemiol, Salt Lake City, UT USA
[3] Univ Cambridge, Dept Genet, Cambridge, England
[4] Armed Forces Res Inst Med Sci, Dept Virol, Bangkok, Thailand
[5] Minist Publ Hlth, Nonthaburi, Thailand
[6] Univ Rhode Isl, Inst Immunol & Informat, Dept Cell & Mol Biol, Providence, RI USA
[7] SUNY Upstate Med Univ, Dept Microbiol & Immunol, Syracuse, NY USA
[8] Univ Florida, Dept Biol, Gainesville, FL USA
[9] Univ Florida, Emerging Pathogens Inst, Gainesville, FL USA
[10] Univ Utah, Dept Pathol, Div Microbiol & Immunol, Salt Lake City, UT 84112 USA
基金
欧洲研究理事会; 美国国家卫生研究院;
关键词
BLOOD-STREAM INFECTIONS; AEDES-AEGYPTI; RANDOM FOREST; ADULTS;
D O I
10.1126/sciadv.adj9786
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The differentiation of dengue virus (DENV) infection, a major cause of acute febrile illness in tropical regions, from other etiologies, may help prioritize laboratory testing and limit the inappropriate use of antibiotics. While traditional clinical prediction models focus on individual patient-level parameters, we hypothesize that for infectious diseases, population-level data sources may improve predictive ability. To create a clinical prediction model that integrates patient-extrinsic data for identifying DENV among febrile patients presenting to a hospital in Thailand, we fit random forest classifiers combining clinical data with climate and population-level epidemiologic data. In cross-validation, compared to a parsimonious model with the top clinical predictors, a model with the addition of climate data, reconstructed susceptibility estimates, force of infection estimates, and a recent case clustering metric significantly improved model performance.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Population science with individual-level data make for better policies
    Bar-Zeev, Naor
    Shet, Anita
    LANCET RESPIRATORY MEDICINE, 2021, 9 (09): : 942 - 943
  • [22] POPULATION-LEVEL ANALYSES CANNOT TELL US ANYTHING ABOUT INDIVIDUAL-LEVEL MARIJUANA-OPIOID SUBSTITUTION
    Caputi, Theodore L.
    Sabet, Kevin A.
    AMERICAN JOURNAL OF PUBLIC HEALTH, 2018, 108 (03) : E12 - E12
  • [23] Estimation of population-level effects on wildlife based on individual-level exposures: Influence of life-history strategies
    Sample, BE
    Rose, KA
    Suter, GW
    ENVIRONMENTAL CONTAMINANTS AND TERRESTRIAL VERTEBRATES: EFFECTS ON POPULATIONS, COMMUNITIES, AND ECOSYSTEMS, 2000, : 225 - 243
  • [24] JOINT MODEL PREDICTION AND APPLICATION TO INDIVIDUAL-LEVEL LOSS RESERVING
    Okine, A. Nii-Armah
    Frees, Edward W.
    Shi, Peng
    ASTIN BULLETIN, 2022, 52 (01): : 91 - 116
  • [25] THE IMPACT OF JURISDICTIONAL BOUNDARIES - AN INDIVIDUAL-LEVEL TEST OF THE TIEBOUT MODEL
    LOWERY, D
    LYONS, WE
    JOURNAL OF POLITICS, 1989, 51 (01): : 73 - 97
  • [26] Prediction of population-level response from mysid toxicity test data using population modeling techniques
    Kuhn, A
    Munns, WR
    Poucher, S
    Champlin, D
    Lussier, S
    ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2000, 19 (09) : 2364 - 2371
  • [27] Similar individual-level responses to stressors have different population-level consequences among closely related species of trout
    Accolla, Chiara
    Vaugeois, Maxime
    Forbes, Valery E.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 693
  • [28] Independent component model of the default-mode brain function: combining individual-level and population-level analyses in resting-state fMRI
    Esposito, Fabrizio
    Aragri, Adriana
    Pesaresi, Ilaria
    Cirillo, Sossio
    Tedeschi, Gioacchino
    Marciano, Elio
    Goebel, Rainer
    Di Salle, Francesco
    MAGNETIC RESONANCE IMAGING, 2008, 26 (07) : 905 - 913
  • [29] Randomized controlled trials of individual-level, population-level, and multilevel interventions for preventing sexually transmitted infections: What has worked?
    Manhart, LE
    Holmes, KK
    JOURNAL OF INFECTIOUS DISEASES, 2005, 191 : S7 - S24
  • [30] ASSESSING THE GENERALIZABILITY OF CLINICAL TRIALS WITHOUT INDIVIDUAL-LEVEL TRIAL DATA
    Wang, W. J.
    Bansal, A.
    Bennette, C.
    Basu, A.
    VALUE IN HEALTH, 2019, 22 : S322 - S323