Integration of population-level data sources into an individual-level clinical prediction model for dengue virus test positivity

被引:0
|
作者
Williams, Robert J. [1 ]
Brintz, Ben J. [1 ,2 ]
Dos Santos, Gabriel Ribeiro [3 ]
Huang, Angkana T. [3 ,4 ]
Buddhari, Darunee [4 ]
Kaewhiran, Surachai [5 ]
Iamsirithaworn, Sopon [5 ]
Rothman, Alan L. [6 ]
Thomas, Stephen [7 ]
Farmer, Aaron [4 ]
Fernandez, Stefan [4 ]
Cummings, Derek A. T. [8 ,9 ]
Anderson, Kathryn B. [4 ,7 ]
Salje, Henrik [3 ]
Leung, Daniel T. [1 ,10 ]
机构
[1] Univ Utah, Dept Internal Med, Div Infect Dis, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Internal Med, Div Epidemiol, Salt Lake City, UT USA
[3] Univ Cambridge, Dept Genet, Cambridge, England
[4] Armed Forces Res Inst Med Sci, Dept Virol, Bangkok, Thailand
[5] Minist Publ Hlth, Nonthaburi, Thailand
[6] Univ Rhode Isl, Inst Immunol & Informat, Dept Cell & Mol Biol, Providence, RI USA
[7] SUNY Upstate Med Univ, Dept Microbiol & Immunol, Syracuse, NY USA
[8] Univ Florida, Dept Biol, Gainesville, FL USA
[9] Univ Florida, Emerging Pathogens Inst, Gainesville, FL USA
[10] Univ Utah, Dept Pathol, Div Microbiol & Immunol, Salt Lake City, UT 84112 USA
基金
欧洲研究理事会; 美国国家卫生研究院;
关键词
BLOOD-STREAM INFECTIONS; AEDES-AEGYPTI; RANDOM FOREST; ADULTS;
D O I
10.1126/sciadv.adj9786
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The differentiation of dengue virus (DENV) infection, a major cause of acute febrile illness in tropical regions, from other etiologies, may help prioritize laboratory testing and limit the inappropriate use of antibiotics. While traditional clinical prediction models focus on individual patient-level parameters, we hypothesize that for infectious diseases, population-level data sources may improve predictive ability. To create a clinical prediction model that integrates patient-extrinsic data for identifying DENV among febrile patients presenting to a hospital in Thailand, we fit random forest classifiers combining clinical data with climate and population-level epidemiologic data. In cross-validation, compared to a parsimonious model with the top clinical predictors, a model with the addition of climate data, reconstructed susceptibility estimates, force of infection estimates, and a recent case clustering metric significantly improved model performance.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Linking individual-level responses and population-level consequences
    Maltby, L
    Kedwards, TJ
    Forbes, VE
    Grasman, K
    Kammenga, JE
    Munns, WR
    Ringwood, AH
    Weis, JS
    Wood, SN
    ECOLOGICAL VARIABILITY: SEPARATING NATURAL FROM ANTHROPOGENIC CAUSES OF ECOSYSTEM IMPAIRMENT, 2001, : 27 - 82
  • [2] The Normative Underpinnings of Population-Level Alcohol Use: An Individual-Level Simulation Model
    Probst, Charlotte
    Vu, Tuong Manh
    Epstein, Joshua M.
    Nielsen, Alexandra E.
    Buckley, Charlotte
    Brennan, Alan
    Rehm, Juergen
    Purshouse, Robin C.
    HEALTH EDUCATION & BEHAVIOR, 2020, 47 (02) : 224 - 234
  • [3] Guns, Suicide, and Homicide: Individual-Level Versus Population-Level Studies
    Hemenway, David
    ANNALS OF INTERNAL MEDICINE, 2014, 160 (02) : 134 - 135
  • [4] Individual-Level and Population-Level Lateralization: Two Sides of the Same Coin
    Frasnelli, Elisa
    Vallortigara, Giorgio
    SYMMETRY-BASEL, 2018, 10 (12):
  • [5] Individual-Level Influences on Population Data
    Schoendorf, Kenneth C.
    PAEDIATRIC AND PERINATAL EPIDEMIOLOGY, 2014, 28 (03) : 179 - 180
  • [6] A general model of site-dependent population regulation: population-level regulation without individual-level interactions
    McPeek, MA
    Rodenhouse, NL
    Holmes, RT
    Sherry, TW
    OIKOS, 2001, 94 (03) : 417 - 424
  • [7] Population-level and individual-level explainers for propensity score matching in observational studies
    Ghosh, Debashis
    Amini, Arya
    Jones, Bernard L.
    Karam, Sana D.
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [8] Inferring individual-level processes from population-level patterns in cultural evolution
    Kandler, Anne
    Wilder, Bryan
    Fortunato, Laura
    ROYAL SOCIETY OPEN SCIENCE, 2017, 4 (09):
  • [9] Who is at high risk for lung cancer? Population-level and individual-level perspectives
    Alberg, Anthony J.
    Nonemaker, Jill
    SEMINARS IN RESPIRATORY AND CRITICAL CARE MEDICINE, 2008, 29 (03) : 223 - 232
  • [10] Individual-level evolutions manifest population-level scaling in complex supply networks
    Cheng, Likwan
    Karney, Bryan W.
    PHYSICAL REVIEW E, 2018, 98 (06)