Deep Reinforcement Learning-Based Resource Management in Maritime Communication Systems

被引:1
|
作者
Yao, Xi [1 ]
Hu, Yingdong [1 ]
Xu, Yicheng [1 ]
Gao, Ruifeng [2 ]
机构
[1] Nantong Univ, Sch Informat Sci & Technol, Nantong 226019, Peoples R China
[2] Nantong Univ, Sch Transportat & Civil Engn, Nantong 226019, Peoples R China
关键词
deep reinforcement learning; beam allocation scheme; deep Q-network; TRANSMISSION; ALLOCATION; NETWORKS; CAPACITY;
D O I
10.3390/s24072247
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
With the growing maritime economy, ensuring the quality of communication for maritime users has become imperative. The maritime communication system based on nearshore base stations enhances the communication rate of maritime users through dynamic resource allocation. A virtual queue-based deep reinforcement learning beam allocation scheme is proposed in this paper, aiming to maximize the communication rate. More particularly, to reduce the complexity of resource management, we employ a grid-based method to discretize the maritime environment. For the combinatorial optimization problem of grid and beam allocation under unknown channel state information, we model it as a sequential decision process of resource allocation. The nearshore base station is modeled as a learning agent, continuously interacting with the environment to optimize beam allocation schemes using deep reinforcement learning techniques. Furthermore, we guarantee that grids with poor channel state information can be serviced through the virtual queue method. Finally, the simulation results provided show that our proposed beam allocation scheme is beneficial in terms of increasing the communication rate.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Intelligent Cloud Resource Management with Deep Reinforcement Learning
    Zhang, Yu
    Yao, Jianguo
    Guan, Haibing
    IEEE CLOUD COMPUTING, 2017, 4 (06): : 60 - 69
  • [42] Reward Mechanism Design for Deep Reinforcement Learning-Based Microgrid Energy Management
    Hu, Mingjie
    Han, Baohui
    Lv, Shilin
    Bao, Zhejing
    Lu, Lingxia
    Yu, Miao
    2023 6TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY AND POWER ENGINEERING, REPE 2023, 2023, : 201 - 205
  • [43] Deep reinforcement learning-based energy management strategy for hybrid electric vehicles
    Zhang, Shiyi
    Chen, Jiaxin
    Tang, Bangbei
    Tang, Xiaolin
    INTERNATIONAL JOURNAL OF VEHICLE PERFORMANCE, 2022, 8 (01) : 31 - 45
  • [44] Deep Reinforcement Learning-based Spectrum Allocation and Power Management for IAB Networks
    Cheng, Qingqing
    Wei, Zhiqiang
    Yuan, Jinhong
    2021 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2021,
  • [45] Deep Reinforcement Learning for Resource Management in Network Slicing
    Li, Rongpeng
    Zhao, Zhifeng
    Sun, Qi
    I, Chih-Lin
    Yang, Chenyang
    Chen, Xianfu
    Zhao, Minjian
    Zhang, Honggang
    IEEE ACCESS, 2018, 6 : 74429 - 74441
  • [46] Deep reinforcement learning-based adaptive modulation for OFDM underwater acoustic communication system
    Cui, Xuerong
    Yan, Peihao
    Li, Juan
    Li, Shibao
    Liu, Jianhang
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2023, 2023 (01)
  • [47] Deep Reinforcement Learning-Based Resource Allocation for Content Distribution in IoT-Edge-Cloud Computing Environments
    Cui, Tongke
    Yang, Ruopeng
    Fang, Chao
    Yu, Shui
    SYMMETRY-BASEL, 2023, 15 (01):
  • [48] Deep reinforcement learning-based adaptive modulation for OFDM underwater acoustic communication system
    Xuerong Cui
    Peihao Yan
    Juan Li
    Shibao Li
    Jianhang Liu
    EURASIP Journal on Advances in Signal Processing, 2023
  • [49] Cooperative Multi-Agent Deep Reinforcement Learning for Resource Management in Full Flexible VHTS Systems
    Ortiz-Gomez, Flor G.
    Tarchi, Daniele
    Martinez, Ramon
    Vanelli-Coralli, Alessandro
    Salas-Natera, Miguel A.
    Landeros-Ayala, Salvador
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2022, 8 (01) : 335 - 349
  • [50] Deep reinforcement learning-based computation offloading and resource allocation in security-aware mobile edge computing
    Ke, H. C.
    Wang, H.
    Zhao, H. W.
    Sun, W. J.
    WIRELESS NETWORKS, 2021, 27 (05) : 3357 - 3373