Characterization of viscoelastic moduli and thickness of isotropic, viscoelastic plates using multi-modal Lamb waves

被引:1
|
作者
Despres, Clement [1 ,2 ,3 ]
Biateau, Christine [1 ,2 ]
Castaings, Michel [1 ,2 ]
Quaegebeur, Nicolas [3 ]
Masson, Patrice [3 ]
Ducasse, Eric [1 ,2 ]
机构
[1] Univ Bordeaux, CNRS, Bordeaux INP, I2M,UMR 5295, F-33400 Talence, France
[2] Hesam Univ, Arts & Metiers Inst Technol, CNRS, Bordeaux INP,I2M,UMR 5295, F-33400 Talence, France
[3] Univ Sherbrooke, Dept Mech Engn, GAUS, CRASH UdeS, Sherbrooke, PQ J1K 2R1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Lamb waves; Sensitivity functions; Characterization of viscoelastic moduli; Characterization of thickness; Air-coupled transducers; COMPOSITE-MATERIALS; GUIDED-WAVES; INVERSION;
D O I
10.1016/j.ndteint.2024.103095
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper presents an approach exploiting the sensitivity of Lamb waves for characterizing the viscoelastic moduli and thickness of plates. The analytical sensitivity functions are first derived in the case of an isotropic plate and are integrated into an iterative inverse problem to optimize its viscoelastic moduli and thickness based on a zero -finding approach (Gauss-Newton algorithm for a multivariable problem). This method is validated numerically for a viscoelastic plate and shows high accuracy and low computational cost when compared to existing methods. Experimental validation demonstrates the ability of the algorithm to assess simultaneously the viscoelastic moduli and the thickness of isotropic plate -like structures.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A modal decomposition imaging algorithm for ultrasonic detection of delamination defects in carbon fiber composite plates using air-coupled Lamb waves
    Wang, Bingquan
    Shi, Weijia
    Zhao, Bo
    Tan, Jiubin
    MEASUREMENT, 2022, 195
  • [42] Accelerating Battery Characterization Using Neutron and Synchrotron Techniques: Toward a Multi-Modal and Multi-Scale Standardized Experimental Workflow
    Atkins, Duncan
    Capria, Ennio
    Edstrom, Kristina
    Famprikis, Theodosios
    Grimaud, Alexis
    Jacquet, Quentin
    Johnson, Mark
    Matic, Aleksandar
    Norby, Poul
    Reichert, Harald
    Rueff, Jean-Pascal
    Villevieille, Claire
    Wagemaker, Marnix
    Lyonnard, Sandrine
    ADVANCED ENERGY MATERIALS, 2022, 12 (17)
  • [43] Automatic Detection and Characterization of Autonomic Dysreflexia Using Multi-Modal Non-Invasive Sensing and Neural Networks
    Suresh, Shruthi
    Everett, Thomas H.
    Shi, Riyi
    Duerstock, Bradley S.
    NEUROTRAUMA REPORTS, 2022, 3 (01): : 501 - 510
  • [44] Characterization of complex fluvio-deltaic deposits in Northeast China using multi-modal machine learning fusion
    Boateng, Cyril D.
    Fu, Li-Yun
    Danuor, Sylvester K.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [45] Immuno-capture of extracellular vesicles for individual multi-modal characterization using AFM, SEM and Raman spectroscopy
    Beekman, Pepijn
    Enciso-Martinez, Agustin
    Rho, Hoon Suk
    Pujari, Sidharam Pundlik
    Lenferink, Aufried
    Zuilhof, Han
    Terstappen, Leon W. M. M.
    Otto, Cees
    Le Gac, Severine
    LAB ON A CHIP, 2019, 19 (15) : 2526 - 2536
  • [46] Numerical simulation of single- and multi-step shear stress relaxations of isotropic magnetorheological elastomer using fractional derivative viscoelastic models
    Nam, T. H.
    Petrikova, I
    Marvalova, B.
    ARCHIVES OF MECHANICS, 2022, 74 (04): : 251 - 266
  • [47] Characterization of the full complex-valued stiffness tensor of orthotropic viscoelastic plates using 3D guided wavefield data
    Orta, Adil Han
    Kersemans, Mathias
    Roozen, Nicolaas Bernardus
    Abeele, Koen Van Den
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 191
  • [48] Examination of zone-based radiomic features for characterization of dominant intraprostatic lesions using MR multi-modal information
    Bagher-Ebadian, Hassan
    Janic, Branislava
    Liu, Chang
    Pantelic, Milan V.
    Hearshen, David
    Elshaikh, Mohamed
    Movsas, Benjamin
    Chetty, Indrin J.
    Wen, Ning
    CANCER RESEARCH, 2018, 78 (13)
  • [49] Characterization viscoelastic properties of multi-walled carbon Nanotubes/F2314 composites using DMA method
    Lin, Cong-Mei
    Liu, Jia-Hui
    Liu, Shi-Jun
    Huang, Zhong
    Li, Yu-Bin
    Zhang, Jian-Hu
    Hanneng Cailiao/Chinese Journal of Energetic Materials, 2015, 23 (02): : 140 - 145
  • [50] Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3)
    Dai, Zhengjia
    Yan, Chaogan
    Wang, Zhiqun
    Wang, Jinhui
    Xia, Mingrui
    Li, Kuncheng
    He, Yong
    NEUROIMAGE, 2012, 59 (03) : 2187 - 2195