FuzConvSteganalysis: Steganalysis via fuzzy logic and convolutional neural network

被引:3
作者
De La Croix, Ntivuguruzwa Jean [1 ,2 ]
Ahmad, Tohari [1 ]
机构
[1] Inst Teknol Sepuluh Nopember, Dept Informat, Surabaya 60111, Indonesia
[2] Univ Rwanda, Coll Sci & Technol, African Ctr Excellence Internet Things, Kigali 3900, Rwanda
关键词
Information security; Steganalysis; Fuzzy logic; CNN; Spatial domain images; Information and communication technology; IMAGES;
D O I
10.1016/j.softx.2024.101713
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Emerging technologies based on the advancements in Deep Learning (DL) induced several alternative approaches to address intricate problems, such as analyzing images in the spatial to identify the location of the hidden content utilizing Convolutional Neural Networks (CNNs) as a backbone. Contemporarily, several CNN architectures have surfaced, elevating the accuracy of locating the concealed data in images. However, existing CNNs face challenges attributed to the heightened imperceptibility of the location of the secret data hidden with low payload capacities and less than optimal feature learning procedures. In this work, a steganalysis scheme named FuzConvSteganalysis proposes an innovative software tool that combines fuzzy logic and CNNs to locate the pixels holding the hidden information in the spatial domain images. FuzConvSteganalysis comprises three primary stages: the derivation of modification maps delineating alterations between the original image and the image containing concealed data, generating the correlation maps, and predicting the possible positions of hidden data. The maps resulting from the modification of the image serve as fuzzy inference system input and are subsequently fed into a CNN for classification. Through experimentation, FuzConvSteganalysis is assessed against four distinct adaptive data hiding approaches: WOW, HILL, S-UNIWARD, and HUGO-BD. Upon initial examination, the sensitivity for all four approaches exhibits a comparable upward trend, progressively enhancing with augmented payload capacity. The locating accuracy for the steganographically modified pixels attains a peak of 92.89% with WOW at a concealment rate of 0.5. This substantiates the superior efficacy of the FuzConvSteganalysis compared to the state-of-the-art algorithms.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Feature learning for steganalysis using convolutional neural networks
    Qian, Yinlong
    Dong, Jing
    Wang, Wei
    Tan, Tieniu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (15) : 19633 - 19657
  • [32] Image Steganalysis based on Pretrained Convolutional Neural Networks
    Ahmed, Ismail Taha
    Hammad, Baraa Tareq
    Jamil, Norziana
    2022 IEEE 18TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & APPLICATIONS (CSPA 2022), 2022, : 283 - 286
  • [33] Architectural Modifications to Enhance Steganalysis with Convolutional Neural Networks
    Martyniak, Remigiusz
    Czaplewski, Bartosz
    COMPUTATIONAL SCIENCE, ICCS 2024, PT II, 2024, 14833 : 50 - 67
  • [34] A Fuzzy Logic Inspired Approach for Social Media Sentiment Analysis via Deep Neural Network
    Chakraborty, Anit
    Kolya, Anup
    Dutta, Sayandip
    ADVANCED COMPUTATIONAL AND COMMUNICATION PARADIGMS, VOL 2, 2018, 706 : 175 - 185
  • [35] Reference Channels for Steganalysis of Images with Convolutional Neural Networks
    Chen, Mo
    Boroumand, Mehdi
    Fridrich, Jessica
    IH&MMSEC '19: PROCEEDINGS OF THE ACM WORKSHOP ON INFORMATION HIDING AND MULTIMEDIA SECURITY, 2019, : 188 - 197
  • [36] Anti-steganalysis for image on convolutional neural networks
    Li, Shiyu
    Ye, Dengpan
    Jiang, Shunzhi
    Liu, Changrui
    Niu, Xiaoguang
    Luo, Xiangyang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (7-8) : 4315 - 4331
  • [37] Feature learning for steganalysis using convolutional neural networks
    Yinlong Qian
    Jing Dong
    Wei Wang
    Tieniu Tan
    Multimedia Tools and Applications, 2018, 77 : 19633 - 19657
  • [39] Fuzzy-logic and Neural network Fuzzy forecasting of Iran GDP growth
    Mirbagheri, Mirnaser
    AFRICAN JOURNAL OF BUSINESS MANAGEMENT, 2010, 4 (06): : 925 - 929
  • [40] Software Defect Prediction via Convolutional Neural Network
    Li, Jian
    He, Pinjia
    Zhu, Jieming
    Lyu, Michael R.
    2017 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY (QRS), 2017, : 318 - 328