A Decentralized Communication Framework Based on Dual-Level Recurrence for Multiagent Reinforcement Learning

被引:3
|
作者
Li, Xuesi [1 ]
Li, Jingchen [1 ]
Shi, Haobin [1 ]
Hwang, Kao-Shing [2 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci & Engn, Xian 710129, Shaanxi, Peoples R China
[2] Natl Sun Yat Sen Univ, Dept Elect Engn, Kaohsiung 804, Taiwan
基金
中国国家自然科学基金;
关键词
Reinforcement learning; Logic gates; Training; Adaptation models; Multi-agent systems; Task analysis; Decision making; Gated recurrent network; multiagent reinforcement learning; multiagent system;
D O I
10.1109/TCDS.2023.3281878
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Designing communication channels for multiagent is a feasible method to conduct decentralized learning, especially in partially observable environments or large-scale multiagent systems. In this work, a communication model with dual-level recurrence is developed to provide a more efficient communication mechanism for the multiagent reinforcement learning field. The communications are conducted by a gated-attention-based recurrent network, in which the historical states are taken into account and regarded as the second-level recurrence. We separate communication messages from memories in the recurrent model so that the proposed communication flow can adapt changeable communication objects in the case of limited communication, and the communication results are fair to every agent. We provide a sufficient discussion about our method in both partially observable and fully observable environments. The results of several experiments suggest our method outperforms the existing decentralized communication frameworks and the corresponding centralized training method.
引用
收藏
页码:640 / 649
页数:10
相关论文
共 50 条
  • [21] A Dual Reinforcement Learning Framework for Weakly Supervised Phrase Grounding
    Wang, Zhiyu
    Yang, Chao
    Jiang, Bin
    Yuan, Junsong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 394 - 405
  • [22] RescueNet: Reinforcement-learning-based communication framework for emergency networking
    Lee, Eun Kyung
    Viswanathan, Hariharasudhan
    Pompili, Dario
    COMPUTER NETWORKS, 2016, 98 : 14 - 28
  • [23] Mean-Field Multiagent Reinforcement Learning: A Decentralized Network Approach
    Gu, Haotian
    Guo, Xin
    Wei, Xiaoli
    Xu, Renyuan
    MATHEMATICS OF OPERATIONS RESEARCH, 2025, 50 (01) : 506 - 536
  • [24] Inverse Reinforcement Learning for Decentralized Non-Cooperative Multiagent Systems
    Reddy, Tummalapalli Sudhamsh
    Gopikrishna, Vamsikrishna
    Zaruba, Gergely
    Huber, Manfred
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 1930 - 1935
  • [25] Efficient Communication via Self-Supervised Information Aggregation for Online and Offline Multiagent Reinforcement Learning
    Guan, Cong
    Chen, Feng
    Yuan, Lei
    Zhang, Zongzhang
    Yu, Yang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [26] Prior Knowledge-Augmented Broad Reinforcement Learning Framework for Fault Diagnosis of Heterogeneous Multiagent Systems
    Guo, Li
    Ren, Yiran
    Li, Runze
    Jiang, Bin
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (01) : 115 - 123
  • [27] Cooperative Partial Task Offloading and Resource Allocation for IIoT Based on Decentralized Multiagent Deep Reinforcement Learning
    Zhang, Fan
    Han, Guangjie
    Liu, Li
    Zhang, Yu
    Peng, Yan
    Li, Chao
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (03) : 5526 - 5544
  • [28] An Antenna Optimization Framework Based on Deep Reinforcement Learning
    Peng, Fengling
    Chen, Xing
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2024, 72 (10) : 7594 - 7605
  • [29] Multi-Level Policy and Reward-Based Deep Reinforcement Learning Framework for Image Captioning
    Xu, Ning
    Zhang, Hanwang
    Liu, An-An
    Nie, Weizhi
    Su, Yuting
    Nie, Jie
    Zhang, Yongdong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (05) : 1372 - 1383
  • [30] Blockchain-Based Distributed Multiagent Reinforcement Learning for Collaborative Multiobject Tracking Framework
    Shen, Jiahao
    Sheng, Hao
    Wang, Shuai
    Cong, Ruixuan
    Yang, Da
    Zhang, Yang
    IEEE TRANSACTIONS ON COMPUTERS, 2024, 73 (03) : 778 - 788