On the oxidation and ignition of uranium carbide fragments in air and comparison with zirconium carbide oxidation

被引:0
|
作者
Gasparrini, C. [1 ,2 ,6 ]
Podor, R. [3 ]
Fiquet, O. [4 ]
Rushton, M. J. D. [1 ,2 ,5 ]
Lee, W. E. [1 ,2 ,5 ]
机构
[1] Imperial Coll London, Dept Mat, London SW7 2AZ, England
[2] Imperial Coll London, Ctr Nucl Engn, London SW7 2AZ, England
[3] Univ Montpellier, CNRS, CEA, ICSM,ENSCM, Site Marcoule, Bagnols Sur Ceze, France
[4] CEA Cadarache, DES, IRESNE, DEC,SA3E,LCU,CEA, F-13108 St Paul Les Durance, France
[5] Bangor Univ, Nucl Futures Inst, Dean St, Bangor LL57 1UT, Gwynedd, Wales
[6] Jensen Hughes, Via Keplero 5, I-20016 Milan, Italy
基金
英国工程与自然科学研究理事会;
关键词
Uranium carbide; Zirconium carbide; Ignition; Pyrophoricity; Oxidation; YOUNGS MODULUS; CARBON-DIOXIDE; BEHAVIOR; OXIDES; FUEL; MONOCARBIDE; ADSORPTION;
D O I
10.1016/j.jnucmat.2024.154944
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Oxidation of uranium carbide (UC) small fragments from sintered pellets was experimentally tested to better understand UC safe-handling procedures given the renewed interest of non-oxide fuels for high temperature gas or liquid metal cooled reactors. Transformation from UC to U3O8 via a self-ignition reaction was observed at partial pressure of oxygen as low as 10 Pa. The heat output from UC self-ignition in fragments (not-free from UO2 contamination) previously stored in either air atmosphere or inert-atmosphere during a three months period was monitored at 973 K and 1073 K in air atmosphere in a TGA/DTA and no difference could be observed. Residual carbon content, measured as amorphous carbon, carbide or CO/CO2, decreased with exposition temperature in U3O8 resulting oxide, this is in contrast with zirconium carbide resulting oxide, ZrO2. Cracking and stresses accumulated in the oxide were highest for UC to U3O8 compared to UC to UO2 reactions and ZrC to ZrO2 reactions.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Uranium carbide oxidation from 873 K to 1173 K
    Gasparrini, Claudia
    Podor, Renaud
    Fiquet, Olivier
    Horlait, Denis
    May, Sarah
    Wenman, Mark R.
    Lee, William E.
    CORROSION SCIENCE, 2019, 151 : 44 - 56
  • [2] Zirconium Carbide Oxidation: Maltese Cross Formation and Interface Characterization
    Gasparrini, Claudia
    Podor, Renaud
    Horlait, Denis
    Chater, Richard
    Lee, William Edward
    OXIDATION OF METALS, 2017, 88 (3-4): : 509 - 519
  • [3] Zirconia growth on zirconium carbide single crystals by oxidation
    Bellucci, A
    Gozzi, D
    Kimura, T
    Noda, T
    Otani, S
    SURFACE & COATINGS TECHNOLOGY, 2005, 197 (2-3): : 294 - 302
  • [4] Mathematical modelling of the pre-oxidation of a uranium carbide fuel pellet
    Shepherd, James S.
    Fairweather, Michael
    Heggs, Peter J.
    Hanson, Bruce C.
    COMPUTERS & CHEMICAL ENGINEERING, 2015, 83 : 203 - 213
  • [5] Modelling the Oxidation of Spent Uranium Carbide Fuel
    Shepherd, James
    Fairweather, Michael
    Heggs, Peter
    Hanson, Bruce
    24TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PTS A AND B, 2014, 33 : 355 - 360
  • [6] Oxidation of reaction-bonded silicon carbide-boron carbide in air
    El Shafei, Kareem
    Al Nasiri, Nasrin
    CERAMICS INTERNATIONAL, 2021, 47 (12) : 17463 - 17470
  • [7] High-temperature oxidation and nitridation of substoichiometric zirconium carbide in isothermal air
    Konnik, Matthew T.
    Oldham, Trey
    Rzepka, Allison
    Le Maout, Vincent
    Stephani, Kelly A.
    Panerai, Francesco
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (11) : 6771 - 6776
  • [8] Oxidation of tungsten carbide powders in air
    Kurlov, A. S.
    Gusev, A. I.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2013, 41 : 300 - 307
  • [9] Zirconium Carbide Oxidation: Maltese Cross Formation and Interface Characterization
    Claudia Gasparrini
    Renaud Podor
    Denis Horlait
    Richard Chater
    William Edward Lee
    Oxidation of Metals, 2017, 88 : 509 - 519
  • [10] Scrap oxidation of uranium carbide heavy ion accelerator target material
    Jo, Bohyun
    Shim, Youngho
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2022, 39 (10) : 2810 - 2816