Discrete quantum walks on the symmetric group

被引:2
作者
Banerjee, Avah [1 ]
机构
[1] Missouri S&T, Comp Sci, 500 W 15th St, Rolla, MO 65409 USA
基金
美国国家科学基金会;
关键词
Quantum walks; Cayley graphs; Symmetric group; Non-commutative Fourier analysis;
D O I
10.1007/s40509-024-00332-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Both the transient and limiting dynamical behavior of classical random walks on non-abelian groups have a well-developed theory utilizing non-commutative Fourier analysis. The success of the non-commutative Fourier transform in the analysis of such random walks lies in the fact that in the Fourier domain, the distribution for the next step can be determined by a multiplication instead of a convolution operation, and character theory can be used to find analytical formulas for the distribution. In this paper, we initiate a study of using non-commutative Fourier transform for expressing the dynamics of discrete quantum walks in non-abelian groups. More specifically, we investigate the discrete-time quantum walk model on Cayley graphs of the symmetric group. We present the following results: (1) An expression for the probability amplitude of the walker's state using a recurrence relation in the Fourier domain; (2) A relationship between certain symmetries of the initial state, the generating set for the Cayley graph, and the state of the walker; (3) An expression for the probability amplitudes, derived for the Cayley graph with only two generators, based on a sequence that behaves like a 1D Walsh matrix.
引用
收藏
页码:477 / 490
页数:14
相关论文
共 50 条
  • [41] Implementation of quantum walks on IBM quantum computers
    Acasiete, F.
    Agostini, F. P.
    Moqadam, J. Khatibi
    Portugal, R.
    [J]. QUANTUM INFORMATION PROCESSING, 2020, 19 (12)
  • [42] Quantum walks via quantum cellular automata
    Pedro C. S. Costa
    Renato Portugal
    Fernando de Melo
    [J]. Quantum Information Processing, 2018, 17
  • [43] Quantum walks via quantum cellular automata
    Costa, Pedro C. S.
    Portugal, Renato
    de Melo, Fernando
    [J]. QUANTUM INFORMATION PROCESSING, 2018, 17 (09)
  • [44] Controlled quantum teleportation based on quantum walks
    Shi, Wei-Min
    Bai, Meng-Xuan
    Zhou, Yi-Hua
    Yang, Yu-Guang
    [J]. QUANTUM INFORMATION PROCESSING, 2022, 22 (01)
  • [45] Implementation of quantum walks on IBM quantum computers
    F. Acasiete
    F. P. Agostini
    J. Khatibi Moqadam
    R. Portugal
    [J]. Quantum Information Processing, 2020, 19
  • [46] Enhanced quantum transport in chiral quantum walks
    Annoni, Emilio
    Frigerio, Massimo
    Paris, Matteo G. A.
    [J]. QUANTUM INFORMATION PROCESSING, 2024, 23 (04)
  • [47] Enhanced quantum transport in chiral quantum walks
    Emilio Annoni
    Massimo Frigerio
    Matteo G. A. Paris
    [J]. Quantum Information Processing, 23
  • [48] Controlled quantum teleportation based on quantum walks
    Wei-Min Shi
    Meng-Xuan Bai
    Yi-Hua Zhou
    Yu-Guang Yang
    [J]. Quantum Information Processing, 22
  • [49] THE GENERATOR AND QUANTUM MARKOV SEMIGROUP FOR QUANTUM WALKS
    Ko, Chul Ki
    Yoo, Hyun Jae
    [J]. KODAI MATHEMATICAL JOURNAL, 2013, 36 (02) : 363 - 385
  • [50] Quantum scalar product via quantum walks
    Wang, Jin-Tao
    Gan, Zhi-Gang
    Ye, Tian-Yu
    [J]. PHYSICS LETTERS A, 2025, 536