Discrete quantum walks on the symmetric group

被引:2
作者
Banerjee, Avah [1 ]
机构
[1] Missouri S&T, Comp Sci, 500 W 15th St, Rolla, MO 65409 USA
基金
美国国家科学基金会;
关键词
Quantum walks; Cayley graphs; Symmetric group; Non-commutative Fourier analysis;
D O I
10.1007/s40509-024-00332-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Both the transient and limiting dynamical behavior of classical random walks on non-abelian groups have a well-developed theory utilizing non-commutative Fourier analysis. The success of the non-commutative Fourier transform in the analysis of such random walks lies in the fact that in the Fourier domain, the distribution for the next step can be determined by a multiplication instead of a convolution operation, and character theory can be used to find analytical formulas for the distribution. In this paper, we initiate a study of using non-commutative Fourier transform for expressing the dynamics of discrete quantum walks in non-abelian groups. More specifically, we investigate the discrete-time quantum walk model on Cayley graphs of the symmetric group. We present the following results: (1) An expression for the probability amplitude of the walker's state using a recurrence relation in the Fourier domain; (2) A relationship between certain symmetries of the initial state, the generating set for the Cayley graph, and the state of the walker; (3) An expression for the probability amplitudes, derived for the Cayley graph with only two generators, based on a sequence that behaves like a 1D Walsh matrix.
引用
收藏
页码:477 / 490
页数:14
相关论文
共 50 条
  • [31] Quantum Walks on Hypergraphs
    Przemysław Sadowski
    Łukasz Pawela
    Paulina Lewandowska
    Ryszard Kukulski
    International Journal of Theoretical Physics, 2019, 58 : 3382 - 3393
  • [32] Complementarity in quantum walks
    Grudka, Andrzej
    Kurzynski, Pawel
    Polak, Tomasz P.
    Sajna, Adam S.
    Wojcik, Jan
    Wojcik, Antoni
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (27)
  • [33] Quaternionic quantum walks
    Konno N.
    Quantum Studies: Mathematics and Foundations, 2015, 2 (1) : 63 - 76
  • [34] Sedentariness in quantum walks
    Hermie Monterde
    Quantum Information Processing, 22
  • [35] Trojan Quantum Walks
    Henrique S. Ghizoni
    Edgard P. M. Amorim
    Brazilian Journal of Physics, 2019, 49 : 168 - 172
  • [36] Quantum walks on embeddings
    Zhan, Hanmeng
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (04) : 1187 - 1213
  • [37] Quantum key distribution with quantum walks
    Chrysoula Vlachou
    Walter Krawec
    Paulo Mateus
    Nikola Paunković
    André Souto
    Quantum Information Processing, 2018, 17
  • [38] Quantum key distribution with quantum walks
    Vlachou, Chrysoula
    Krawec, Walter
    Mateus, Paulo
    Paunkovic, Nikola
    Souto, Andre
    QUANTUM INFORMATION PROCESSING, 2018, 17 (11)
  • [39] Adjustable-depth quantum circuit for position-dependent coin operators of discrete-time quantum walks
    Nzongani, Ugo
    Arnault, Pablo
    QUANTUM INFORMATION PROCESSING, 2024, 23 (05)
  • [40] Generating highly entangled states via discrete-time quantum walks with Parrondo sequences
    Panda, Dinesh Kumar
    Govind, B. Varun
    Benjamin, Colin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 608