Role of single-atom alloy catalysts in electrochemical conversion of carbon dioxide: A theoretical study

被引:3
|
作者
Wang, Jingnan [1 ]
Zhao, Kaiheng [1 ]
Yi, Ding [2 ,3 ]
Yang, Yongan [1 ,2 ]
Wang, Xi [2 ,3 ]
机构
[1] Tianjin Univ, Inst Mol Plus, Tianjin 300072, Peoples R China
[2] Beijing Jiaotong Univ, Tangshan Res Inst, Tangshan 063000, Peoples R China
[3] Beijing Jiaotong Univ, Sch Phys Sci & Engn, Key Lab Luminescence & Opt Informat, Minist Educ, Beijing 100044, Peoples R China
关键词
Single -atom alloy catalysts; Electrocatalysis; Carbon dioxide conversion; Density functional theory; C -C coupling; TOTAL-ENERGY CALCULATIONS; CO2; REDUCTION; ELECTROREDUCTION; CHALLENGES; PATHWAYS; MONOXIDE; DESIGN;
D O I
10.1016/j.ces.2024.119910
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Atomic-scale understanding of C-C coupling in the electrocatalytic conversion of carbon dioxide (CO2) into valuable C2 chemicals remains elusive. Herein, we selected Group VIII and IB transition metals as active sites incorporated into the Cu(1 0 0) surface to construct single-atom alloy catalysts. The stability, selectivity, and activity of a series of catalysts were calculated using density functional theory. Fe, Co, Ni, Ru/Cu(1 0 0) exhibit the potential as candidates to generate C2 products and suppress the hydrogen evolution reaction (HER). The reaction proceeds through the reduction of CO2 to key intermediates *CO and *CHO, which undergoes C-C coupling to generate *CO-CHO, subsequently undergoing different protonation processes to yield diverse C2 products. The rate-determining step for Fe, Co, Ni, and Ru/Cu(1 0 0), is the hydrogenation of *CO, with a comparable energy barrier of 0.8 eV. Moreover, Fe and Co/Cu(100) favor the formation of C2H4 as the primary product, while Ni and Ru/Cu(1 0 0) predominantly produce CH3COOH.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Advances in Graphene-Supported Single-Atom Catalysts for Clean Energy Conversion
    Dai, Yunkun
    Kong, Fanrong
    Tai, Xuehan
    Zhang, Yunlong
    Liu, Bing
    Cai, Jiajun
    Gong, Xiaofei
    Xia, Yunfei
    Guo, Pan
    Liu, Bo
    Zhang, Jian
    Li, Lin
    Zhao, Lei
    Sui, Xulei
    Wang, Zhenbo
    ELECTROCHEMICAL ENERGY REVIEWS, 2022, 5 (SUPPL 2)
  • [22] Computational study of the conversion of methane and carbon dioxide to acetic acid over NU-1000 metal-organic framework-supported single-atom metal catalysts
    Sittiwong, Jarinya
    Opasmongkolchai, Ornanong
    Srifa, Pemikar
    Boekfa, Bundet
    Treesukol, Piti
    Sangthong, Winyoo
    Maihom, Thana
    Limtrakul, Jumras
    MOLECULAR CATALYSIS, 2023, 535
  • [23] Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions
    Zhan, Qi-Ni
    Shuai, Ting -Yu
    Xu, Hui -Min
    Huang, Chen-Jin
    Zhang, Zhi-Jie
    Li, Gao-Ren
    CHINESE JOURNAL OF CATALYSIS, 2023, 47 : 32 - 66
  • [24] Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion
    Li, Xuning
    Liu, Linghui
    Ren, Xinyi
    Gao, Jiajian
    Huang, Yanqiang
    Liu, Bin
    SCIENCE ADVANCES, 2020, 6 (39):
  • [25] Recent progress of density functional theory studies on carbon-supported single-atom catalysts for energy storage and conversion
    Shao, Hengjia
    Zhong, Li
    Wu, Xingqiao
    Wang, Yun-Xiao
    Smith, Sean C.
    Tan, Xin
    CHEMICAL COMMUNICATIONS, 2025, 61 (11) : 2203 - 2216
  • [26] Single-Atom Catalysts of Precious Metals for Electrochemical Reactions
    Kim, Jiwhan
    Kim, Hee-Eun
    Lee, Hyunjoo
    CHEMSUSCHEM, 2018, 11 (01) : 104 - 113
  • [27] Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications
    Chen, Yuanjun
    Ji, Shufang
    Chen, Chen
    Peng, Qing
    Wang, Dingsheng
    Li, Yadong
    JOULE, 2018, 2 (07) : 1242 - 1264
  • [28] Elucidating the Reactivity of Oxygenates on Single-Atom Alloy Catalysts
    Li, Weitian
    Madan, Simran Effricia
    Reocreux, Romain
    Stamatakis, Michail
    ACS CATALYSIS, 2023, 13 (24) : 15851 - 15868
  • [29] The Role of Frustrated Lewis Pair in Catalytic Transfer Hydrogenation of Furfural using Nickel Single-Atom Catalysts: A Theoretical Study
    Zhang, Jin
    Jian, Changping
    Wang, Fang-Fang
    Zhang, Wei
    Tian, Zhi
    Chen, De-Li
    CHEMPHYSCHEM, 2025, 26 (01)
  • [30] Rare Earth Single-Atom Catalysts for Nitrogen and Carbon Dioxide Reduction
    Liu, Jieyuan
    Kong, Xue
    Zheng, Lirong
    Guo, Xu
    Liu, Xiaofang
    Shui, Jianglan
    ACS NANO, 2020, 14 (01) : 1093 - 1101