Dynamic lithium-compensation mechanism for densification of garnet-type Li7La3Zr2O12 electrolyte by Li2O atmosphere buffer pair

被引:0
作者
Zheng, Chujun [1 ,3 ]
Chen, Ya [1 ,3 ]
Dong, Haoxin [1 ,3 ]
Lu, Yan [1 ,3 ]
Jin, Jun [1 ,3 ]
Wen, Zhaoyin [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, CAS Key Lab Mat Energy Convers, Shanghai 200050, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
solid-state batteries; garnet-type electrolyte; high-density electrolyte; dynamic lithium-compensation; buffer pair; THERMOCHEMICAL PROPERTIES; LI+ CONDUCTIVITY; MICROSTRUCTURE; VAPORIZATION; CATHODE;
D O I
10.1007/s12274-024-6624-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state lithium metal batteries are one of the most promising options for next-generation batteries pursuing high-energy density and high-safety. However, the inevitable volatilization of lithium compounds during sintering leads to low relative density and low ionic conductivity of solid-state electrolytes. Herein, the dynamic lithium-compensation mechanism is proposed to facilitate the densification of Ta-substituted garnet-type electrolyte (Li6.5La3Zr1.5Ta0.5O12 (LLZT)) through the reversible manipulating of Li2O atmosphere. Li2ZrO3 is used as mother powder additive, which reacts with Li2O in sintering atmosphere and forms Li6Zr2O7. Li2ZrO3/Li6Zr2O7 buffer pair manipulates the sintering Li2O atmosphere, which is vital for LLZT, within the Li2O partial pressure range corresponding to Li2ZrO3 and Li6Zr2O7. Furthermore, the reversibility mechanism of buffer pair for Li2O absorption and release is revealed. The obtained LLZT exhibits a relative density of over 96% and an ionic conductivity exceeding 7 x 10(-4) S<middle dot>cm(-1) with no abnormal grain growth. The symmetric cell demonstrates an excellent lithium dendrite suppressing ability (stable cycling at a current density of 0.3 mA<middle dot>cm(-2) for over 1000 h). Such dynamic lithium-compensation strategy has been successfully applied in atmosphere manipulation of LLZT sintering process, which reduces the dependence of LLZT on the Li2O atmosphere, making it conducive to large-scale preparation of electrolyte ceramics.
引用
收藏
页码:6184 / 6191
页数:8
相关论文
共 36 条
  • [1] Vaporization and thermochemical properties of Li8ZrO6 and comparison with other lithium-containing complex oxides
    Asano, M
    Kato, Y
    Harada, T
    Mizutani, Y
    [J]. JOURNAL OF NUCLEAR MATERIALS, 1996, 230 (02) : 110 - 115
  • [2] Thin-film lithium and lithium-ion batteries
    Bates, JB
    Dudney, NJ
    Neudecker, B
    Ueda, A
    Evans, CD
    [J]. SOLID STATE IONICS, 2000, 135 (1-4) : 33 - 45
  • [3] Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries
    Fan, Lei
    Wei, Shuya
    Li, Siyuan
    Li, Qi
    Lu, Yingying
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (11)
  • [4] Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery
    Fan, Xiulin
    Ji, Xiao
    Han, Fudong
    Yue, Jie
    Chen, Ji
    Chen, Long
    Deng, Tao
    Jiang, Jianjun
    Wang, Chunsheng
    [J]. SCIENCE ADVANCES, 2018, 4 (12):
  • [5] Phase evolution, structure and microwave dielectric properties of Li2+xMg3SnO6 (x=0.00-0.12) ceramics
    Fang, Zixuan
    Tang, Bin
    Si, Feng
    Li, Enzhu
    Yang, Hongyu
    Zhang, Shuren
    [J]. CERAMICS INTERNATIONAL, 2017, 43 (16) : 13645 - 13652
  • [6] From protonation & Li-rich contamination to grain-boundary segregation: Evaluations of solvent-free vs. wet routes on preparing Li7La3Zr2O12 solid electrolyte
    Huang, Xiao
    Lu, Yang
    Niu, Yajun
    Tang, Jiawen
    Zhou, Yongjian
    Yang, Yan
    Tian, Bingbing
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2022, 73 : 223 - 238
  • [7] Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte
    Huang, Xiao
    Lu, Yang
    Song, Zhen
    Rui, Kun
    Wang, Qingsong
    Xiu, Tongping
    Badding, Michael E.
    Wen, Zhaoyin
    [J]. ENERGY STORAGE MATERIALS, 2019, 22 : 207 - 217
  • [8] Searching for low-cost LixMOy compounds for compensating Li-loss in sintering of Li-Garnet solid electrolyte
    Huang, Xiao
    Song, Zhen
    Xiu, Tongping
    Badding, Michael E.
    Wen, Zhaoyin
    [J]. JOURNAL OF MATERIOMICS, 2019, 5 (02) : 221 - 228
  • [9] None-Mother-Powder Method to Prepare Dense Li-Garnet Solid Electrolytes with High Critical Current Density
    Huang, Xiao
    Lu, Yang
    Guo, Haojie
    Song, Zhen
    Xiu, Tongping
    Badding, Michael E.
    Wen, Zhaoyin
    [J]. ACS APPLIED ENERGY MATERIALS, 2018, 1 (10): : 5355 - 5365
  • [10] Influence of La2Zr2O7 Additive on Densification and Li+ Conductivity for Ta-Doped Li7La3Zr2O12 Garnet
    Huang, Xiao
    Shen, Chen
    Rui, Kun
    Jin, Jun
    Wu, Meifen
    Wu, Xiangwei
    Wen, Zhaoyin
    [J]. JOM, 2016, 68 (10) : 2593 - 2600