Quantitative structure-activity relationship predicting toxicity of pesticides towards Daphnia magna

被引:2
作者
Chen, Cong [1 ]
Yang, Bowen [1 ]
Li, Mingwang [1 ]
Huang, Saijin [1 ]
Huang, Xianwei [1 ]
机构
[1] Hunan Inst Engn, Coll Mat & Chem Engn, Hunan Prov Key Lab Environm Catalysis & Waste Rege, Xiangtan 411104, Hunan, Peoples R China
关键词
Daphnia magna; Toxicity; Pesticides; QSTR; Random forest; QSAR; BIOCIDES; MODELS;
D O I
10.1007/s10646-024-02751-1
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Global pesticide usage reaching 2.7 million metric tons annually, brings a grave threat to non-target organisms, especially aquatic organisms, resulting in serious concerns. Predicting aquatic toxicity of pesticides towards Daphnia magna is significant. In this work, random forest (RF) algorithm, together with ten Dragon molecular descriptors, was successfully utilized to develop a quantitative structure-activity/toxicity relationship (QSAR/QSTR) model for the toxicity pEC(50) of 745 pesticides towards Daphnia magna. The optimal QSTR model (RF Model I) based on the RF parameters of ntree = 50, mtry = 3 and nodesize = 5, yielded R-2 = 0.877, MAE = 0.570, rms = 0.739 (training set of 596 pEC(50)), R-2 = 0.807, MAE = 0.732, rms = 0.902 (test set of 149 pEC(50)), and R-2 = 0.863, MAE = 0.602, rms = 0.774 (total set of 745 pEC(50)), which are accurate and satisfactory. The optimal RF model is comparable to other published QSTR models for Daphnia magna, although the optimal RF model possessed a small descriptor subset and dealt with a large dataset of pesticide toxicity pEC(50). Thus, the investigation in this work provides a reliable, applicable QSTR model for predicting the toxicity pEC(50) of pesticides towards Daphnia magna.
引用
收藏
页码:560 / 568
页数:9
相关论文
共 32 条
[1]   Pesticides, cognitive functions and dementia: A review [J].
Aloizou, Athina-Maria ;
Siokas, Vasileios ;
Vogiatzi, Christina ;
Peristeri, Eleni ;
Docea, Anca Oana ;
Petrakis, Demetrios ;
Provatas, Antonios ;
Folia, Vasiliki ;
Chalkia, Charikleia ;
Vinceti, Marco ;
Wilks, Martin ;
Izotov, Boris N. ;
Tsatsakis, Aristidis ;
Bogdanos, Dimitrios P. ;
Dardiotis, Efthimios .
TOXICOLOGY LETTERS, 2020, 326 :31-51
[2]   Ecosystem ecology: Models for acute toxicity of pesticides towards Daphnia magna [J].
Cappelli, Claudia Ileana ;
Toropov, Andrey A. ;
Toropova, Alla P. ;
Benfenati, Emilio .
ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY, 2020, 80
[3]   Identification and description of the uncertainty, variability, bias and influence in quantitative structure-activity relationships (QSARs) for toxicity prediction [J].
Cronin, Mark T. D. ;
Richarz, Andrea-Nicole ;
Schultz, Terry W. .
REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2019, 106 :90-104
[4]   Random forest algorithm-based accurate prediction of chemical toxicity to Tetrahymena pyriformis [J].
Fang, Zhengjun ;
Yu, Xinliang ;
Zeng, Qun .
TOXICOLOGY, 2022, 480
[5]  
Frisch M. J., 2016, GAUSSIAN 16
[6]   QSAR study using acute toxicity of Daphnia magna and Hyalella azteca through exposure to polycyclic aromatic hydrocarbons (PAHs) [J].
Ha, Hongjoo ;
Park, Kapsong ;
Kang, Guyoung ;
Lee, Sungjong .
ECOTOXICOLOGY, 2019, 28 (03) :333-342
[7]   Insights into pesticide toxicity against aquatic organism: QSTR models on Daphnia Magna [J].
He, Lujue ;
Xiao, Keya ;
Zhou, Cong ;
Li, Guanglong ;
Yang, Hongbin ;
Li, Zhong ;
Cheng, Jiagao .
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2019, 173 :285-292
[8]   Insight into the adsorption mechanisms of ionizable imidazolinone herbicides in sediments: Kinetics, adsorption model, and influencing factors [J].
Hu, Mingfeng ;
Liu, Li ;
Hou, Ning ;
Li, Xuesheng ;
Zeng, Dongqiang ;
Tan, Huihua .
CHEMOSPHERE, 2021, 274
[9]   A QSTR model for toxicity prediction of pesticides towards Daphnia magna [J].
Jia, Qingzhu ;
Wang, Junli ;
Yan, Fangyou ;
Wang, Qiang .
CHEMOSPHERE, 2022, 291
[10]   QSAR modeling of Daphnia magna and fish toxicities of biocides using 2D descriptors [J].
Khan, Kabiruddin ;
Khan, Pathan Mohsin ;
Lavado, Giovanna ;
Valsecchi, Cecile ;
Pasqualini, Julia ;
Baderna, Diego ;
Marzo, Marco ;
Lombardo, Anna ;
Roy, Kunal ;
Benfenati, Emilio .
CHEMOSPHERE, 2019, 229 :8-17