Quantitative structure-activity relationship predicting toxicity of pesticides towards Daphnia magna

被引:1
作者
Chen, Cong [1 ]
Yang, Bowen [1 ]
Li, Mingwang [1 ]
Huang, Saijin [1 ]
Huang, Xianwei [1 ]
机构
[1] Hunan Inst Engn, Coll Mat & Chem Engn, Hunan Prov Key Lab Environm Catalysis & Waste Rege, Xiangtan 411104, Hunan, Peoples R China
关键词
Daphnia magna; Toxicity; Pesticides; QSTR; Random forest; QSAR; BIOCIDES; MODELS;
D O I
10.1007/s10646-024-02751-1
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Global pesticide usage reaching 2.7 million metric tons annually, brings a grave threat to non-target organisms, especially aquatic organisms, resulting in serious concerns. Predicting aquatic toxicity of pesticides towards Daphnia magna is significant. In this work, random forest (RF) algorithm, together with ten Dragon molecular descriptors, was successfully utilized to develop a quantitative structure-activity/toxicity relationship (QSAR/QSTR) model for the toxicity pEC(50) of 745 pesticides towards Daphnia magna. The optimal QSTR model (RF Model I) based on the RF parameters of ntree = 50, mtry = 3 and nodesize = 5, yielded R-2 = 0.877, MAE = 0.570, rms = 0.739 (training set of 596 pEC(50)), R-2 = 0.807, MAE = 0.732, rms = 0.902 (test set of 149 pEC(50)), and R-2 = 0.863, MAE = 0.602, rms = 0.774 (total set of 745 pEC(50)), which are accurate and satisfactory. The optimal RF model is comparable to other published QSTR models for Daphnia magna, although the optimal RF model possessed a small descriptor subset and dealt with a large dataset of pesticide toxicity pEC(50). Thus, the investigation in this work provides a reliable, applicable QSTR model for predicting the toxicity pEC(50) of pesticides towards Daphnia magna.
引用
收藏
页码:560 / 568
页数:9
相关论文
共 32 条
  • [1] Pesticides, cognitive functions and dementia: A review
    Aloizou, Athina-Maria
    Siokas, Vasileios
    Vogiatzi, Christina
    Peristeri, Eleni
    Docea, Anca Oana
    Petrakis, Demetrios
    Provatas, Antonios
    Folia, Vasiliki
    Chalkia, Charikleia
    Vinceti, Marco
    Wilks, Martin
    Izotov, Boris N.
    Tsatsakis, Aristidis
    Bogdanos, Dimitrios P.
    Dardiotis, Efthimios
    [J]. TOXICOLOGY LETTERS, 2020, 326 : 31 - 51
  • [2] Ecosystem ecology: Models for acute toxicity of pesticides towards Daphnia magna
    Cappelli, Claudia Ileana
    Toropov, Andrey A.
    Toropova, Alla P.
    Benfenati, Emilio
    [J]. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY, 2020, 80
  • [3] Identification and description of the uncertainty, variability, bias and influence in quantitative structure-activity relationships (QSARs) for toxicity prediction
    Cronin, Mark T. D.
    Richarz, Andrea-Nicole
    Schultz, Terry W.
    [J]. REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2019, 106 : 90 - 104
  • [4] Random forest algorithm-based accurate prediction of chemical toxicity to Tetrahymena pyriformis
    Fang, Zhengjun
    Yu, Xinliang
    Zeng, Qun
    [J]. TOXICOLOGY, 2022, 480
  • [5] Frisch M. J., 2009, GAUSSIAN 09 REVISION
  • [6] QSAR study using acute toxicity of Daphnia magna and Hyalella azteca through exposure to polycyclic aromatic hydrocarbons (PAHs)
    Ha, Hongjoo
    Park, Kapsong
    Kang, Guyoung
    Lee, Sungjong
    [J]. ECOTOXICOLOGY, 2019, 28 (03) : 333 - 342
  • [7] Insights into pesticide toxicity against aquatic organism: QSTR models on Daphnia Magna
    He, Lujue
    Xiao, Keya
    Zhou, Cong
    Li, Guanglong
    Yang, Hongbin
    Li, Zhong
    Cheng, Jiagao
    [J]. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2019, 173 : 285 - 292
  • [8] Insight into the adsorption mechanisms of ionizable imidazolinone herbicides in sediments: Kinetics, adsorption model, and influencing factors
    Hu, Mingfeng
    Liu, Li
    Hou, Ning
    Li, Xuesheng
    Zeng, Dongqiang
    Tan, Huihua
    [J]. CHEMOSPHERE, 2021, 274
  • [9] A QSTR model for toxicity prediction of pesticides towards Daphnia magna
    Jia, Qingzhu
    Wang, Junli
    Yan, Fangyou
    Wang, Qiang
    [J]. CHEMOSPHERE, 2022, 291
  • [10] QSAR modeling of Daphnia magna and fish toxicities of biocides using 2D descriptors
    Khan, Kabiruddin
    Khan, Pathan Mohsin
    Lavado, Giovanna
    Valsecchi, Cecile
    Pasqualini, Julia
    Baderna, Diego
    Marzo, Marco
    Lombardo, Anna
    Roy, Kunal
    Benfenati, Emilio
    [J]. CHEMOSPHERE, 2019, 229 : 8 - 17