Subgroup total perfect codes in Cayley sum graphs

被引:2
作者
Wang, Xiaomeng [1 ]
Wei, Lina [1 ]
Xu, Shou-Jun [1 ]
Zhou, Sanming [2 ]
机构
[1] Lanzhou Univ, Gansu Ctr Appl Math, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
[2] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
基金
中国国家自然科学基金;
关键词
Cayley sum graph; Total perfect code; Regular set; Dihedral group; Generalized quaternion group; DOMINATION SETS;
D O I
10.1007/s10623-024-01405-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} be a graph with vertex set V, and let a, b be nonnegative integers. An (a, b)-regular set in Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} is a nonempty proper subset D of V such that every vertex in D has exactly a neighbours in D and every vertex in V\D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V \setminus D$$\end{document} has exactly b neighbours in D. In particular, a (1, 1)-regular set is called a total perfect code. Let G be a finite group and S a square-free subset of G closed under conjugation. The Cayley sum graph CayS(G,S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{CayS}(G,S)$$\end{document} of G is the graph with vertex set G such that two vertices x, y are adjacent if and only if xy is an element of S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy \in S$$\end{document}. A subset (respectively, subgroup) D of G is called an (a, b)-regular set (respectively, subgroup (a, b)-regular set) of G if there exists a Cayley sum graph of G which admits D as an (a, b)-regular set. We obtain two necessary and sufficient conditions for a subgroup of a finite group G to be a total perfect code in a Cayley sum graph of G. We also obtain two necessary and sufficient conditions for a subgroup of a finite abelian group G to be a total perfect code of G. We classify finite abelian groups whose all non-trivial subgroups of even order are total perfect codes of the group, and as a corollary we obtain that a finite abelian group has the property that every non-trivial subgroup is a total perfect code if and only if it is isomorphic to an elementary abelian 2-group. We prove that, for a subgroup H of a finite abelian group G and any pair of positive integers (a, b) within certain ranges depending on H, H is an (a, b)-regular set of G if and only if it is a total perfect code of G. Finally, we give a classification of subgroup total perfect codes of a cyclic group, a dihedral group and a generalized quaternion group.
引用
收藏
页码:2599 / 2613
页数:15
相关论文
共 27 条
  • [1] Abay-Asmerom G, 2008, ARS COMBINATORIA, V88, P129
  • [2] On Cayley Sum Graphs of Non-Abelian Groups
    Amooshahi, Marzieh
    Taeri, Bijan
    [J]. GRAPHS AND COMBINATORICS, 2016, 32 (01) : 17 - 29
  • [3] LATTICE-LIKE TOTAL PERFECT CODES
    Araujo, Carlos
    Dejter, Italo
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (01) : 57 - 74
  • [4] Biggs N., 2001, ALGEBRAIC GRAPH THEO
  • [5] An overview of (κ, τ)-regular sets and their applications
    Cardoso, Domingos M.
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 269 : 2 - 10
  • [6] Efficient open domination in Cayley graphs
    Chelvam, T. Tamizh
    Mutharasu, Sivagnanam
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (10) : 1560 - 1564
  • [7] Chung FRK., 1989, J AM MATH SOC, V2, P187, DOI [DOI 10.2307/1990973.MR965008, 10.1090/S0894-0347-1989-0965008-X, DOI 10.1090/S0894-0347-1989-0965008-X]
  • [8] Efficient dominating sets in Cayley graphs
    Dejter, IJ
    Serra, O
    [J]. DISCRETE APPLIED MATHEMATICS, 2003, 129 (2-3) : 319 - 328
  • [9] Gavlas H., 2003, SCI A, V6, P77
  • [10] PERFECT CODES IN CAYLEY GRAPHS
    Huang, He
    Xia, Binzhou
    Zhou, Sanming
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (01) : 548 - 559