Fabricated and improved electrochemical properties of layered lithium-rich Co-free manganese-based Li1.2Mn0.6Ni0.2O2 cathode material for lithium-ion batteries

被引:6
作者
Liu, Sining [1 ,2 ]
Yan, Xin [1 ,2 ,3 ]
Tian, Xinru [1 ,2 ,3 ]
Li, Sinan [1 ,2 ,3 ]
Luo, Shao-hua [1 ,2 ,3 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
[2] Key Lab Dielect Electrolyte Funct Mat Hebei Prov, Qinhuangdao, Peoples R China
[3] Northeastern Univ Qinhuangdao, Sch Resources & Mat, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Cathode; Li1.2Mn0.6Ni0.2O2; High-temperature solid-state method; Orthogonal test; ACTIVE MATERIAL; HIGH-ENERGY; LI; PERFORMANCE; NI;
D O I
10.1007/s11581-024-05509-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To meet the development needs of high-performance and low-cost lithium-ion batteries, lithium-rich Co-free manganese-based cathode materials have become the primary choice for future power batteries based on the advantages of low cost and improved battery performance. Herein, Li1.2Mn0.6Ni0.2O2 is prepared by the high-temperature solid-state method. The impacts of calcination temperature, holding time, and heating rate on the microstructure and properties of cathode materials are systematically studied via orthogonal experiments. Results revealed that Li1.2Mn0.6Ni0.2O2 prepared by the high-temperature solid-state method at a calcination temperature of 900 degrees C, holding time of 12 h, and heating rate of 15 degrees C/min is ideal, with a smaller particle size and uniform particle distribution and a lower agglomeration degree, and the initial discharge specific capacity reaches 148.4 mAh<middle dot>g(-1) at 0.1 C. The discharge specific capacity of 102.8 mAh<middle dot>g(-1) is still maintained after 100 charge-discharge cycles. Among the various factors, holding time has the greatest influence on the lithium-rich Co-free manganese-based cathode material. The crystallinity, electrochemical properties, and microstructure of the material prepared at 12 h were considerably better than those prepared under other conditions. Test findings show that with a small particle size and uniform distribution, the synthesized cathode material has better rate and cycle performances.
引用
收藏
页码:3157 / 3169
页数:13
相关论文
共 41 条
[1]   Improved electrochemical performance of LiNi0.5Mn0.5O2 by Li-enrichment and AlF3 coating [J].
Abdel-Ghany, A. ;
El-Tawil, R. S. ;
Hashem, A. M. ;
Mauger, A. ;
Julien, C. M. .
MATERIALIA, 2019, 5
[2]   Development of Li(Ni1/3Mn1/3Co1/3-x Na x )O2 cathode materials by synthesizing with glycine nitrate combustion technique for Li-ion rechargeable batteries [J].
Amaraweera, T. H. N. G. ;
Wijayasinghe, Athula ;
Mellander, B-E ;
Dissanayake, M. A. K. L. .
IONICS, 2017, 23 (11) :3001-3011
[3]   Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes [J].
Assat, Gaurav ;
Foix, Dominique ;
Delacourt, Charles ;
Iadecola, Antonella ;
Dedryvere, Remi ;
Tarascon, Jean-Marie .
NATURE COMMUNICATIONS, 2017, 8
[4]   Synthesis and electrochemical properties of high power Li1+xV3O8 cathode materials for lithium-ion batteries [J].
Bai, Guoliang ;
Wei, Wei ;
Wang, Benqiu ;
Wang, Chunhua ;
Liu, Na ;
Jiang, Jihu ;
Li, Pengpeng .
JOURNAL OF SOLID STATE CHEMISTRY, 2021, 303
[5]   Charge Transport in Single NCM Cathode Active Material Particles for Lithium-Ion Batteries Studied under Well-Defined Contact Conditions [J].
Burkhardt, Simon ;
Friedrich, Markus S. ;
Eckhardt, Janis K. ;
Wagner, Amalia C. ;
Bohn, Nicole ;
Binder, Joachim R. ;
Chen, Limei ;
Elm, Matthias T. ;
Janek, Juergen ;
Klar, Peter J. .
ACS ENERGY LETTERS, 2019, 4 (09) :2117-2123
[6]   Examining Hysteresis in Composite xLi2MnO3•(1-x)LiMO2 Cathode Structures [J].
Croy, Jason R. ;
Gallagher, Kevin G. ;
Balasubramanian, Mahalingam ;
Chen, Zonghai ;
Ren, Yang ;
Kim, Donghan ;
Kang, Sun-Ho ;
Dees, Dennis W. ;
Thackeray, Michael M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (13) :6525-6536
[7]   Nanoscale Phase Separation, Cation Ordering, and Surface Chemistry in Pristine Li1.2Ni0.2Mn0.6O2 for Li-Ion Batteries [J].
Gu, Meng ;
Genc, Arda ;
Belharouak, Ilias ;
Wang, Dapeng ;
Amine, Khalil ;
Thevuthasan, Suntharampillai ;
Baer, Donald R. ;
Zhang, Ji-Guang ;
Browning, Nigel D. ;
Liu, Jun ;
Wang, Chongmin .
CHEMISTRY OF MATERIALS, 2013, 25 (11) :2319-2326
[8]   Structural Reinforcement through High-Valence Nb Doping to Boost the Cycling Stability of Co-Free and Ni-Rich LiNi0.9Mn0.1O2 Cathode Materials [J].
Hu, Chengzhi ;
Ma, Jingtao ;
Li, Afei ;
Li, Cong ;
Wang, Can ;
Chen, Zhangxian ;
Yang, Zeheng ;
Su, Jianhui ;
Zhang, Weixin .
ENERGY & FUELS, 2023, 37 (11) :8005-8013
[9]   Lithium/Oxygen Incorporation and Microstructural Evolution during Synthesis of Li-Rich Layered Li[Li0.2Ni0.2Mn0.6]O2 Oxides [J].
Hua, Weibo ;
Chen, Mingzhe ;
Schwarz, Bjoern ;
Knapp, Michael ;
Bruns, Michael ;
Barthel, Juri ;
Yang, Xiushan ;
Sigel, Florian ;
Azmi, Raheleh ;
Senyshyn, Anatoliy ;
Missiul, Alkesandr ;
Simonelli, Laura ;
Etter, Martin ;
Wang, Suning ;
Mu, Xiaoke ;
Fiedler, Andy ;
Binder, Joachim R. ;
Guo, Xiaodong ;
Chou, Shulei ;
Zhong, Benhe ;
Indris, Sylvio ;
Ehrenberg, Helmut .
ADVANCED ENERGY MATERIALS, 2019, 9 (08)
[10]   Electrochemical and ex situ X-ray study of Li-(Li0.2Ni0.2Mn0.6)O2 cathode material for Li secondary batteries [J].
Kang, SH ;
Sun, YK ;
Amine, K .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (09) :A183-A186