Meliorative dielectric properties in core@double-shell structured Al@Al2O3@PDA/PVDF nanocomposites via decoupling the intraparticle polarization and inter-particle polarization

被引:42
作者
Chen, Xiaolong [1 ]
Zhou, Wenying [1 ]
Wang, Fang [1 ]
Wu, Hongju [1 ]
Zhong, Shaolong [2 ,3 ]
Li, Bo [4 ]
机构
[1] Xian Univ Sci & Technol, Sch Chem & Chem Engn, Xian 710054, Peoples R China
[2] Tsinghua Univ, State Key Lab Power Syst, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[4] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
基金
中国国家自然科学基金;
关键词
Polymer nanocomposites; Dielectric properties; Core -shell structure; Interface; Polarization; COMPOSITES; CARBON;
D O I
10.1016/j.mtener.2024.101543
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Percolating polymeric composites present enormous potential owing to high dielectric constant (e) which can be realized near the percolation threshold, but the accompanied large loss forbids their extensive use in practice. Great efforts have been devoted to coat conductive particles with an insulating shell for constrained dielectric loss, yet they markedly reduce e. In this work, we explore poly(vinylidene fluoride) (PVDF) composites with a serial of core@double-shell Al@Al2O3@PDA (polydopamine) nanoparticles with various PDA shell thicknesses. It reveals that the high e of the nanocomposites results from a fast intra-particle polarization and a slow inter -particle polarization. The formation of double -shell enables the independent control of the two polarizations always coupled in traditional percolating composites. Through facilitating intra-particle polarization and repressing inter -particle polarization, Al@Al2O3@PDA/PVDF can achieve a much higher e and lower dielectric loss simultaneously, far exceeding the unmodified Al@Al2O3/PVDF. Moreover, the calculated activation energy of carrier migration in Al@Al2O3@PDA/PVDF is obviously higher than that in untreated nanocomposites, indicating enhanced charge -trapping capability in the core@double-shell nanofiller composites. This core@double-shell strategy offers a new paradigm for the design and preparation of percolating composites with desirable dielectric performances. (c) 2024 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 47 条
[1]   Low Dielectric Polyimide/Fluorinated Ethylene Propylene (PI/FEP) Nanocomposite Film for High-Frequency Flexible Circuit Board Application [J].
Cheng, Tangjian ;
Lv, Genpin ;
Li, Yitao ;
Yun, Hao ;
Zhang, Lingfei ;
Deng, Yongmao ;
Lin, Liping ;
Luo, Xiangjun ;
Nan, Junmin .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2021, 306 (07)
[2]   Multilayer nanocomposites with ultralow loadings of nanofillers exhibiting superb capacitive energy storage performance [J].
Cheng, Yu ;
Feng, Yu ;
Pan, Zhongbin ;
Wang, Peng ;
Liu, Jinjun ;
Liang, Liang ;
Yu, Jinhong ;
Zhai, Jiwei ;
Wang, Qing .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (12) :5881-5890
[3]   Concurrently enhanced dielectric properties and energy density in poly(vinylidene fluoride)-based core-shell BaTiO3 nanocomposites via constructing a polar and rigid polymer interfacial layer [J].
Ding, Cuilian ;
Tang, Xinxuan ;
Yu, Shiqi ;
Chen, Sheng ;
Liu, Zijin ;
Luo, Hang ;
Zhang, Dou .
JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (16) :6323-6333
[4]   Scalable High-Permittivity Polyimide Copolymer with Ultrahigh High-Temperature Capacitive Performance Enabled by Molecular Engineering [J].
Dong, Jiufeng ;
Li, Li ;
Niu, Yujuan ;
Pan, Zizhao ;
Pan, Yupeng ;
Sun, Liang ;
Tan, Li ;
Liu, Yuqi ;
Xu, Xinwei ;
Guo, Xugang ;
Wang, Qing ;
Wang, Hong .
ADVANCED ENERGY MATERIALS, 2024, 14 (09)
[5]   Ultra-superior high-temperature energy storage properties in polymer nanocomposites via rational design of core-shell structured inorganic antiferroelectric fillers [J].
Fan, Zhenhao ;
Gao, Shuaibing ;
Chang, Yunfei ;
Wang, Dawei ;
Zhang, Xin ;
Huang, Haitao ;
He, Yunbin ;
Zhang, Qingfeng .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (13) :7227-7238
[6]   A N/Co co-doped three-dimensional porous carbon as cathode host for advanced lithium-selenium batteries [J].
Gao, Fei ;
Yue, Xiang-An ;
Xu, Xiang-Yu ;
Xu, Peng ;
Zhang, Fan ;
Fan, Hao-Sen ;
Wang, Zhou-Lu ;
Wu, Yu-Tong ;
Liu, Xiang ;
Zhang, Yi .
RARE METALS, 2023, 42 (08) :2670-2678
[7]   Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability [J].
Gong, Kaijie ;
Peng, Yanmeng ;
Liu, An ;
Qi, Shuhua ;
Qiu, Hua .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2024, 176
[8]   Core-shell structured Al/PVDF nanocomposites with high dielectric permittivity but low loss and enhanced thermal conductivity [J].
Gong, Ying ;
Zhou, Wenying ;
Sui, Xuezhen ;
Kou, Yujia ;
Xu, Li ;
Duan, Yue ;
Chen, Fuxin ;
Li, Ying ;
Liu, Xiangrong ;
Cai, Huiwu ;
Chen, Qingguo ;
Dang, Zhi-Min .
POLYMER ENGINEERING AND SCIENCE, 2019, 59 (01) :103-111
[9]   Achieving Synergistic Improvement in Dielectric and Energy Storage Properties of All-Organic Poly(Methyl Methacrylate)-Based Copolymers Via Establishing Charge Traps [J].
He, Guanghu ;
Luo, Huang ;
Yan, Chuanfang ;
Wan, Yuting ;
Wu, Dang ;
Luo, Hang ;
Liu, Yuan ;
Chen, Sheng .
ENERGY & ENVIRONMENTAL MATERIALS, 2024, 7 (02)
[10]   Hierarchical and Orderly Surface Conductive Networks in Yolk-Shell Fe3O4@C@Co/N-Doped C Microspheres for Enhanced Microwave Absorption [J].
He, Peng ;
Ma, Wenjun ;
Xu, Jian ;
Wang, Yizhe ;
Cui, Zhong-Kai ;
Wei, Jie ;
Zuo, Peiyuan ;
Liu, Xiaoyun ;
Zhuang, Qixin .
SMALL, 2023, 19 (40)