Cooperative Mashup Embedding Leveraging Knowledge Graph for Web API Recommendation

被引:0
|
作者
Zhang, Chunxiang [1 ]
Qin, Shaowei [1 ]
Wu, Hao [1 ]
Zhang, Lei [2 ]
机构
[1] Yunnan Univ, Sch Informat Sci & Engn, Kunming 650091, Peoples R China
[2] Nanjing Normal Univ, Sch Elect & Automat Engn, Nanjing 210024, Peoples R China
基金
中国国家自然科学基金;
关键词
Mashup applications; API recommendation; knowledge graph; cooperative embedding; SERVICE RECOMMENDATION;
D O I
10.1109/ACCESS.2024.3384487
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Creating top-notch Mashup applications is becoming increasingly difficult with an overwhelming number of Web APIs. Researchers have developed various API recommendation techniques to help developers quickly locate the right API. In particular, deep learning-based solutions have attracted much attention due to their excellent representation learning capabilities. However, existing methods mainly use textual or graphical information, and do not fully consider the two, which may lead to suboptimal representation and damage recommendation performance. In this paper, we propose a Cooperative Mashup Embedding (CME) neural framework that integrates knowledge graph embedding and text encoding, using Node2Vec to convert entities into numerical vectors and BERT to encode text descriptions. A cooperative embedding method was developed to optimize the entire model while capturing graph and text data knowledge. In addition, the representations obtained by the framework of the three recommendation models are derived. Experimental results on the ProgrammableWeb dataset indicate that our proposed method outperforms the SOTA methods in recommendation performance metrics Top@{1,5,10}. Precision and Recall have increased from 3% to 11%, while NDCG and MAP have improved from 3% to 6%.
引用
收藏
页码:49708 / 49719
页数:12
相关论文
共 50 条
  • [21] Similarity attributed knowledge graph embedding enhancement for item recommendation
    Khan, Nasrullah
    Ma, Zongmin
    Ullah, Aman
    Polat, Kemal
    INFORMATION SCIENCES, 2022, 613 : 69 - 95
  • [22] A Hybrid Pattern Knowledge Graph-Based API Recommendation Approach
    Wang, Guan
    Wang, Weidong
    Li, Dian
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT III, 2022, 13606 : 465 - 476
  • [23] Similarity and Complementarity Attention-Based Graph Neural Networks for Mashup-Oriented Cloud API Recommendation
    Shen, Limin
    Wang, Yuying
    Zhang, Shuai
    Chen, Zhen
    ELECTRONICS, 2023, 12 (21)
  • [24] APIRec: deep knowledge and diversity-aware web API recommendation
    Song, Fanfei
    Wang, Bin
    Xie, Xinqiang
    Pu, Rong
    Zhang, Qingbo
    Wang, Wei
    SERVICE ORIENTED COMPUTING AND APPLICATIONS, 2024,
  • [25] Knowledge graph-based recommendation system enhanced by neural collaborative filtering and knowledge graph embedding
    Shokrzadeh, Zeinab
    Feizi-Derakhshi, Mohammad-Reza
    Balafar, Mohammad -Ali
    Mohasefi, Jamshid Bagherzadeh
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (01)
  • [26] Knowledge Graph Enhanced Web API Recommendation via Neighbor Information Propagation for Multi-service Application Development
    Chen, Zhen
    Li, Yujie
    Wang, Yuying
    Liu, Xiaowei
    Xing, Yifan
    Liu, Linlin
    You, Dianlong
    Shen, Limin
    COLLABORATIVE COMPUTING: NETWORKING, APPLICATIONS AND WORKSHARING, COLLABORATECOM 2022, PT I, 2022, 460 : 20 - 40
  • [27] A data-driven API recommendation approach for service mashup composition
    Alam, Khubaib Amjad
    Haroon, Muhammad
    Ain, Qurratul
    Inayat, Irum
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2025,
  • [28] A Structure Alignment Deep Graph Model for Mashup Recommendation
    Lima, Eduardo
    Liu, Xumin
    SERVICE-ORIENTED COMPUTING (ICSOC 2021), 2021, 13121 : 682 - 690
  • [29] Contextualized Knowledge Graph Embedding for Explainable Talent Training Course Recommendation
    Yang, Yang
    Zhang, Chubing
    Song, Xin
    Dong, Zheng
    Zhu, Hengshu
    Li, Wenjie
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (02)
  • [30] Neural Library Recommendation by Embedding Project-Library Knowledge Graph
    Li, Bo
    Quan, Haowei
    Wang, Jiawei
    Liu, Pei
    Cai, Haipeng
    Miao, Yuan
    Yang, Yun
    Li, Li
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2024, 50 (06) : 1620 - 1638