Demand prediction for urban air mobility using deep learning

被引:0
|
作者
Ahmed, Faheem [1 ]
Memon, Muhammad Ali [1 ]
Rajab, Khairan [2 ]
Alshahrani, Hani [2 ]
Abdalla, Mohamed Elmagzoub [3 ]
Rajab, Adel [2 ]
Houe, Raymond [4 ]
Shaikh, Asadullah [5 ]
机构
[1] Univ Sindh, Dept Informat Technol, Jamshoro, Sindh, Pakistan
[2] Najran Univ, Coll Comp Sci & Informat Syst, Dept Comp Sci, Najran, Saudi Arabia
[3] Najran Univ, Coll Comp Sci & Informat Syst, Dept Network & Commun Engn, Najran, Saudi Arabia
[4] Univ Tolouse, INP ENIT, Tarbes, France
[5] Najran Univ, Coll Comp Sci & Informat Syst, Dept Informat Syst, Najran, Saudi Arabia
关键词
Deep learning; Urban air mobility; Prediction; Demand of mobility; Temporal data; MODE CHOICE;
D O I
10.7717/peerj-cs.1946
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Urban air mobility, also known as UAM, is currently being researched in a variety of metropolitan regions throughout the world as a potential new mode of transport for travelling shorter distances inside a territory. In this article, we investigate whether or not the market can back the necessary financial commitments to deploy UAM. A challenge in defining and addressing a critical phase of such guidance is called a demand forecast problem. To achieve this goal, a deep learning model for forecasting temporal data is proposed. This model is used to find and study the scientific issues involved. A benchmark dataset of 150,000 records was used for this purpose. Our experiments used different state-of-the-art DL models: LSTM, GRU, and Transformer for UAM demand prediction. The transformer showed a high performance with an RMSE of 0.64, allowing decision-makers to analyze the feasibility and viability of their investments.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 50 条
  • [21] Effective Electricity Demand Prediction via Deep Learning
    Ko D.
    Yoon Y.
    Kim J.
    Choi H.
    IEIE Transactions on Smart Processing and Computing, 2021, 10 (06) : 483 - 489
  • [22] Medium and long-term trend prediction of urban air quality based on deep learning
    Wang, Zhencheng
    Xie, Feng
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL TECHNOLOGY AND MANAGEMENT, 2022, 25 (1-2) : 22 - 37
  • [23] Improving Intra-Urban Prediction of Atmospheric Fine Particles Using a Hybrid Deep Learning Approach
    Zhang, Zhengyu
    Ren, Jiuchun
    Chang, Yunhua
    ATMOSPHERE, 2023, 14 (03)
  • [24] Predicting medicine demand using deep learning techniques: A review
    Mousa, Bashaer Abdurahman
    Al-Khateeb, Belal
    JOURNAL OF INTELLIGENT SYSTEMS, 2023, 32 (01)
  • [25] Pedestrian Behavior Prediction Using Deep Learning Methods for Urban Scenarios: A Review
    Zhang, Chi
    Berger, Christian
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (10) : 10279 - 10301
  • [26] Spatiotemporal Deep Learning Model for Citywide Air Pollution Interpolation and Prediction
    Le, Van-Duc
    Bui, Tien-Cuong
    Cha, Sang-Kyun
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 55 - 62
  • [27] Commuter demand estimation and feasibility assessment for Urban Air Mobility in Northern California
    Rimjha, Mihir
    Hotle, Susan
    Trani, Antonio
    Hinze, Nicolas
    TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE, 2021, 148 : 506 - 524
  • [28] Optimising Deep Learning at the Edge for Accurate Hourly Air Quality Prediction
    Wardana, I. Nyoman Kusuma
    Gardner, Julian W.
    Fahmy, Suhaib A.
    SENSORS, 2021, 21 (04) : 1 - 28
  • [29] Spatial and Temporal Variations on Air Quality Prediction Using Deep Learning Techniques
    Vandhana, S.
    Anuradha, J.
    CYBERNETICS AND INFORMATION TECHNOLOGIES, 2023, 23 (04) : 213 - 232
  • [30] Air quality prediction using CNN plus LSTM-based hybrid deep learning architecture
    Gilik, Aysenur
    Ogrenci, Arif Selcuk
    Ozmen, Atilla
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (08) : 11920 - 11938