Operando Ultrasonic Monitoring of the Internal Temperature of Lithium-ion Batteries for the Detection and Prevention of Thermal Runaway

被引:4
|
作者
Owen, Rhodri E. [1 ,2 ,3 ]
Wisniewska, Ewelina [1 ,3 ]
Braglia, Michele [4 ]
Stocker, Richard [4 ]
Shearing, Paul R. [3 ,5 ]
Brett, Dan J. L. [1 ,2 ,3 ]
Robinson, James B. [1 ,2 ,3 ]
机构
[1] UCL, Dept Chem Engn, Electrochem Innovat Lab, Torrington Pl, London WC1E 7JE, England
[2] Adv Prop Lab, UCL, London E20 2AE, England
[3] Faraday Inst, Harwell Sci & Innovat Campus, Quad 1, Didcot OX11 0RA, England
[4] Horiba Mira Ltd, Nueaton CV10 0TU, Warwick, England
[5] Univ Oxford, ZERO Inst, Holywell House, Oxford OX2 0ES, England
基金
“创新英国”项目;
关键词
ultrasound; batteries; -; Li-ion; safety; thermal runaway; SAFETY ISSUES;
D O I
10.1149/1945-7111/ad3beb
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-ion batteries (LIBs) play an integral role in powering various applications, from consumer electronics to stationary storage, and notably in the accelerating domain of electric vehicles (EVs). Despite their widespread adoption and numerous benefits, safety issues are of major concern, especially with the surge in their utilization and increasing proliferation of second-life cells, particularly in domestic energy storage applications. A critical concern revolves around susceptibility to thermal runaway, leading to highly hazardous and challenging-to-contain fires. Addressing these concerns necessitates effective methods to monitor internal temperature dynamics within lithium-ion cells swiftly and cost-effectively, alongside a need to develop prognostic techniques to pre-empt thermal runaway occurrences. This study presents an innovative approach that uses ultrasound analysis to track intricate internal temperature fluctuations and gradients within cells. Moreover, an efficient multi-stage warning system is proposed that is designed to proactively prevent thermal runaway events. The findings offer promising avenues for enhancing the safety and reliability of lithium-ion battery systems.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Advances in Prevention of Thermal Runaway in Lithium-Ion Batteries
    McKerracher, Rachel D.
    Guzman-Guemez, Jorge
    Wills, Richard G. A.
    Sharkh, Suleiman M.
    Kramer, Denis
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (05):
  • [2] Insights into Thermal Runaway of Cylindrical Lithium-ion Batteries by Internal Temperature Sensors
    Feinauer, Max
    Holzle, Markus
    Waldmann, Thomas
    ELECTROCHEMICAL SOCIETY INTERFACE, 2024, 33 (03): : 51 - 54
  • [3] In Situ Thermal Runaway Detection in Lithium-Ion Batteries with an Integrated Internal Sensor
    Parekh, Mihit H.
    Li, Bing
    Palanisamy, Manikandan
    Adams, Thomas E.
    Tomar, Vikas
    Pol, Vilas G.
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (08): : 7997 - 8008
  • [4] Review of polymers in the prevention of thermal runaway in lithium-ion batteries
    Allen, Jonathan
    ENERGY REPORTS, 2020, 6 : 217 - 224
  • [5] Monitoring and diagnostic approaches for thermal runaway in lithium-ion batteries
    Xu, Zengheng
    Zhou, Xiaoyan
    Fu, Jialong
    Li, Qiutong
    Tan, Zejie
    Fan, Xiaopeng
    Wang, Zhiming
    Tian, Bing
    Guo, Xin
    CHINESE SCIENCE BULLETIN-CHINESE, 2023, 68 (33): : 4501 - 4516
  • [6] Thermal Runaway of Lithium-Ion Batteries without Internal Short Circuit
    Liu, Xiang
    Ren, Dongsheng
    Hsu, Hungjen
    Feng, Xuning
    Xu, Gui-Liang
    Zhuang, Minghao
    Gao, Han
    Lu, Languang
    Han, Xuebing
    Chu, Zhengyu
    Li, Jianqiu
    He, Xiangming
    Amine, Khalil
    Ouyang, Minggao
    JOULE, 2018, 2 (10) : 2047 - 2064
  • [7] Seawater submersion for cylindrical lithium-ion batteries thermal runaway prevention
    Meelapchotipong, Pongkorn
    Charoenphonphanich, Chinda
    Masomtob, Manop
    Kunanusont, Nattanai
    JOURNAL OF ENERGY STORAGE, 2024, 99
  • [8] A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries
    Shahid, Seham
    Agelin-Chaab, Martin
    ENERGY CONVERSION AND MANAGEMENT-X, 2022, 16
  • [9] The early warning for thermal runaway of lithium-ion batteries based on internal and external temperature model
    Jia, Teng
    Zhang, Ying
    Ma, Chuyuan
    Yu, Hang
    Hu, Sihang
    JOURNAL OF ENERGY STORAGE, 2024, 83
  • [10] Monitoring thermal runaway of lithium-ion batteries by means of gas sensors
    Wang, Xiao-Xue
    Li, Qiu-Tong
    Zhou, Xiao-Yan
    Hu, Yi-Ming
    Guo, Xin
    SENSORS AND ACTUATORS B-CHEMICAL, 2024, 411