GRAPHS WITHOUT A RAINBOW PATH OF LENGTH 3

被引:3
作者
Babinski, Sebastian [1 ]
Grzesik, Andrzej [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, P-30 348 Krakow, Poland
关键词
extremal graph theory; rainbow coloring; Turan-type problems; TURAN PROBLEM; NUMBERS;
D O I
10.1137/22M1535048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1959, ErdoH \s and Gallai proved the asymptotically optimal bound for the maximum number of edges in graphs not containing a path of a fixed length. Here, we study a rainbow version of their theorem, in which one considers k \geq 1 graphs on a common set of vertices not creating a path having edges from different graphs and asks for the maximum number of edges in each graph. We prove the asymptotically optimal bound in the case of a path on three edges and any k \geq 1.
引用
收藏
页码:629 / 644
页数:16
相关论文
共 25 条
[1]  
AHARONI R., 2020, Adv. Comb, P12, DOI DOI 10.19086/AIC.12043
[2]  
[Anonymous], 1907, Wiskundige Opgaven
[3]   Generalized rainbow Turan numbers of odd cycles [J].
Balogh, Jozsef ;
Delcourt, Michelle ;
Heath, Emily ;
Li, Lina .
DISCRETE MATHEMATICS, 2022, 345 (02)
[4]  
CULVER E., A Colorful Version of Mantel's Theorem
[5]   Rainbow Turan problem for even cycles [J].
Das, Shagnik ;
Lee, Choongbum ;
Sudakov, Benny .
EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (05) :905-915
[6]  
DeVos M, 2019, ELECTRON J COMB, V26
[7]  
DIWAN A., 2007, Tura'\n's Theorem with Colors
[8]   ON THE STRUCTURE OF LINEAR GRAPHS [J].
ERDOS, P ;
STONE, AH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (12) :1087-1091
[9]  
Erdos P., 1959, ACTA MATH ACAD SCI H, V10, P337, DOI DOI 10.1007/BF02024498
[10]  
Ergemlidze B, 2019, ELECTRON J COMB, V26