A new family of fourth-order energy-preserving integrators

被引:0
作者
Miyatake, Yuto [1 ]
机构
[1] Osaka Univ, Cybermedia Ctr, Osaka, Japan
关键词
Energy-preservation; Poisson system; Parallelism; CONSTRUCTION;
D O I
10.1007/s11075-024-01824-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For Hamiltonian systems with non-canonical structure matrices, a new family of fourth-order energy-preserving integrators is presented. The integrators take a form of a combination of Runge-Kutta methods and continuous-stage Runge-Kutta methods and feature a set of free parameters that offer greater flexibility and efficiency. Specifically, we demonstrate that by carefully choosing these free parameters, a simplified Newton iteration applied to the integrators of order four can be parallelizable. This results in faster and more efficient integrators compared with existing fourth-order energy-preserving integrators.
引用
收藏
页码:1269 / 1293
页数:25
相关论文
共 17 条
[1]   Arbitrarily high-order energy-conserving methods for Poisson problems [J].
Amodio, Pierluigi ;
Brugnano, Luigi ;
Iavernaro, Felice .
NUMERICAL ALGORITHMS, 2022, 91 (02) :861-894
[2]   Energy-preserving methods for Poisson systems [J].
Brugnano, L. ;
Calvo, M. ;
Montijano, J. I. ;
Randez, L. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (16) :3890-3904
[3]  
Brugnano L., 2010, J Numer Anal Ind Appl Math, V5, P17
[4]   Linear energy-preserving integrators for Poisson systems [J].
Cohen, David ;
Hairer, Ernst .
BIT NUMERICAL MATHEMATICS, 2011, 51 (01) :91-101
[5]   Order theory for discrete gradient methods [J].
Eidnes, Solve .
BIT NUMERICAL MATHEMATICS, 2022, 62 (04) :1207-1255
[6]  
Gonzalez O, 1996, J NONLINEAR SCI, V6, P449, DOI 10.1007/s003329900018
[7]  
Hairer E., 2010, J. Numer. Anal. Ind. Appl. Math., V5, P73
[8]  
Hairer Ernst, 2006, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, V2nd
[9]   Geometric integration using discrete gradients [J].
McLachlan, RI ;
Quispel, GRW ;
Robidoux, N .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 357 (1754) :1021-1045
[10]   A CHARACTERIZATION OF ENERGY-PRESERVING METHODS AND THE CONSTRUCTION OF PARALLEL INTEGRATORS FOR HAMILTONIAN SYSTEMS [J].
Miyatake, Yuto ;
Butcher, John C. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (03) :1993-2013