In vitro and in vivo evaluation of periosteum-derived cells and iPSC-derived chondrocytes encapsulated in GelMA for osteochondral tissue engineering

被引:2
作者
Agten, Hannah [1 ,2 ,3 ]
Van Hoven, Inge [2 ]
Van Hoorick, Jasper [4 ]
Van Vlierberghe, Sandra [4 ,5 ]
Luyten, Frank P. [2 ,3 ]
Bloemen, Veerle [1 ,2 ,3 ]
机构
[1] Katholieke Univ Leuven, Dept Mat Engn, Grp Leuven Campus T, Surface & Interface Engn Mat SIEM, Leuven, Belgium
[2] Katholieke Univ Leuven, Skeletal Biol & Engn Res Ctr, Leuven, Belgium
[3] Katholieke Univ Leuven, Div Skeletal Tissue Engn, Prometheus, Leuven, Belgium
[4] BIO INX BV, Zwijnaarde, Belgium
[5] Univ Ghent, Ctr Macromol Chem, Polymer Chem & Biomat Grp, Ghent, Belgium
关键词
tissue engineering; cartilage; osteochondral; induced pluripotent stem cell-derived chondrocyte; serum-free; ARTICULAR-CARTILAGE; MECHANICAL-PROPERTIES; COMPRESSIVE MODULUS; STEM-CELLS; GELATIN; BONE; HYDROGELS; DIFFERENTIATION; REGENERATION; GENERATION;
D O I
10.3389/fbioe.2024.1386692
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Osteochondral defects are deep joint surface lesions that affect the articular cartilage and the underlying subchondral bone. In the current study, a tissue engineering approach encompassing individual cells encapsulated in a biocompatible hydrogel is explored in vitro and in vivo. Cell-laden hydrogels containing either human periosteum-derived progenitor cells (PDCs) or human induced pluripotent stem cell (iPSC)-derived chondrocytes encapsulated in gelatin methacryloyl (GelMA) were evaluated for their potential to regenerate the subchondral mineralized bone and the articular cartilage on the joint surface, respectively. PDCs are easily isolated and expanded progenitor cells that are capable of generating mineralized cartilage and bone tissue in vivo via endochondral ossification. iPSC-derived chondrocytes are an unlimited source of stable and highly metabolically active chondrocytes. Cell-laden hydrogel constructs were cultured for up to 28 days in a serum-free chemically defined chondrogenic medium. On day 1 and day 21 of the differentiation period, the cell-laden constructs were implanted subcutaneously in nude mice to evaluate ectopic tissue formation 4 weeks post-implantation. Taken together, the data suggest that iPSC-derived chondrocytes encapsulated in GelMA can generate hyaline cartilage-like tissue constructs with different levels of maturity, while using periosteum-derived cells in the same construct type generates mineralized tissue and cortical bone in vivo. Therefore, the aforementioned cell-laden hydrogels can be an important part of a multi-component strategy for the manufacturing of an osteochondral implant.
引用
收藏
页数:15
相关论文
共 64 条
[1]   Dynamic Mechanical Compression of Chondrocytes for Tissue engineering: A Critical Review [J].
Anderson, Devon E. ;
Johnstone, Brian .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2017, 5
[2]   Engineering Complex Tissues [J].
Atala, Anthony ;
Kasper, F. Kurtis ;
Mikos, Antonios G. .
SCIENCE TRANSLATIONAL MEDICINE, 2012, 4 (160)
[3]   Stiffness Matters: Fine-Tuned Hydrogel Elasticity Alters Chondrogenic Redifferentiation [J].
Bachmann, Barbara ;
Spitz, Sarah ;
Schaedl, Barbara ;
Teuschl, Andreas H. ;
Redl, Heinz ;
Nuernberger, Sylvia ;
Ertl, Peter .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
[4]   Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel [J].
Beck, Emily C. ;
Barragan, Marilyn ;
Tadros, Madeleine H. ;
Gehrke, Stevin H. ;
Detamore, Michael S. .
ACTA BIOMATERIALIA, 2016, 38 :94-105
[5]   Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs [J].
Boere, Kristel W. M. ;
Visser, Jetze ;
Seyednejad, Hajar ;
Rahimian, Sima ;
Gawlitta, Debby ;
van Steenbergen, Mies J. ;
Dhert, Wouter J. A. ;
Hennink, Wim E. ;
Vermonden, Tina ;
Malda, Jos .
ACTA BIOMATERIALIA, 2014, 10 (06) :2602-2611
[6]   Ectopic models recapitulating morphological and functional features of articular cartilage [J].
Cai, Xiaoyu ;
Daniels, Oliver ;
Cucchiarini, Magali ;
Madry, Henning .
ANNALS OF ANATOMY-ANATOMISCHER ANZEIGER, 2021, 237
[7]   Stem Cells for Osteochondral Regeneration [J].
Canadas, Raphael F. ;
Pirraco, Rogerio P. ;
Oliveira, J. Miguel ;
Reis, Rui L. ;
Marques, Alexandra P. .
OSTEOCHONDRAL TISSUE ENGINEERING: CHALLENGES, CURRENT STRATEGIES, AND TECHNOLOGICAL ADVANCES, 2018, 1059 :219-240
[8]   Generation and characterization of human induced pluripotent stem cells (iPSCs) from hand osteoarthritis patient-derived fibroblasts [J].
Castro-Vinuelas, R. ;
Sanjurjo-Rodriguez, C. ;
Pineiro-Ramil, M. ;
Hermida-Gomez, T. ;
Rodriguez-Fernandez, S. ;
Oreiro, N. ;
de Toro, J. ;
Fuentes, I ;
Blanco, F. J. ;
Diaz-Prado, S. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[9]  
Confalonieri D, 2018, TISSUE ENG PART B-RE, V24, P155, DOI [10.1089/ten.teb.2017.0305, 10.1089/ten.TEB.2017.0305]
[10]   3D printed microchannel networks to direct vascularisation during endochondral bone repair [J].
Daly, Andrew C. ;
Pitacco, Pierluca ;
Nulty, Jessica ;
Cunniffe, Grainne M. ;
Kelly, Daniel J. .
BIOMATERIALS, 2018, 162 :34-46