Optimization of biomethane production from lignocellulosic biomass by a developed microbial consortium

被引:4
|
作者
Ali, Shehbaz [1 ,2 ,3 ,4 ]
Dar, Mudasir A. [1 ,2 ,3 ]
Liaqat, Fakhra [1 ,2 ,3 ]
Sethupathy, Sivasamy [1 ,2 ,3 ]
Rani, Abida [5 ]
Khan, Mohammad Ilyas [6 ]
Rehan, Mohammad [7 ]
Zhu, Daochen [1 ,2 ,3 ]
机构
[1] Jiangsu Univ, Biofuels Inst, Sch Environm & Safety Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Jiangsu Univ, Int Joint Lab Synthet Biol & Biomass Biorefinery, Zhenjiang, Peoples R China
[3] Suzhou Univ Sci & Technol, Jiangsu Collaborat Innovat Ctr Technol & Mat Water, Suzhou 215009, Peoples R China
[4] Natl Inst Biotechnol & Genet Engn, Ind Biotechnol Div, Faisalabad, Pakistan
[5] Bahauddin Zakariya Univ, Fac Pharm, Dept Pharmaceut Chem, Multan, Pakistan
[6] King Khalid Univ, Coll Engn, Chem Engn Dept, Abha, Saudi Arabia
[7] King Abdulaziz Univ, Ctr Excellence Environm Studies CEES, Jeddah, Saudi Arabia
关键词
Lignocellulosic biomass; Anaerobic digestion; Volatile fatty acids; Biomethane potential; Mathematical Modelling; ANAEROBIC CO-DIGESTION; RICE STRAW; WHEAT-STRAW; BIOGAS PRODUCTION; METHANE PRODUCTION; PRETREATMENT; FRACTIONATION; ENERGY;
D O I
10.1016/j.psep.2024.02.037
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Biomethane production from lignocellulosic biomass via anaerobic digestion (AD) is a promising avenue for bioenergy. However, maximizing biomethane yield using developed microbial consortium (DMC) remains a complex challenge. This study aims to elucidate the comparative efficacy of a purposefully DMC under controlled conditions for AD of kallar grass (KG), rice husk (RH) and wheat residue (WR). The DMC encompasses Bacteroidetes, Firmicutes, Proteobacteria, Euryarchaeota, and Chloroflexi, with methanogens representing 14.6% of the community. Thorough physico-chemical characteristics and ultimate analyses provided comprehensive insights into compositions and bio-methane potentials prediction of biomasses. The digester revealed higher biomethane potentials (BMPs) with short lag phase and retention time and showed methane content of 61-64.6% during the first week of AD. The amount of volatile fatty acids (VFA) did not exceed the threshold levels, which facilitated the smooth operation of AD. The BMP was found highest in KG (289.7 mL/g VS), followed by RH (283.3 mL/g VS), and WR (269.7 mL/g VS) which is significantly higher than previously reported studies. The modified Gompertz model showed the best fit, followed by logistic and transference function models. The observed results signpost the tremendous potential of waste biomass particularly KG, RH and WR to produce biomethane by DMC. This study provides crucial insights for optimizing BMP emphasizing the promising prospects of KG, RH, and WR for sustainable bioenergy applications.
引用
收藏
页码:1106 / 1118
页数:13
相关论文
共 50 条
  • [11] Microbial co-cultures for biochemicals production from lignocellulosic biomass: A review
    Llamas, Mercedes
    Greses, Silvia
    Magdalena, Jose Antonio
    Gonzalez-Fernandez, Cristina
    Tomas-Pejo, Elia
    BIORESOURCE TECHNOLOGY, 2023, 386
  • [12] Reconstruction and optimization of a Pseudomonas putida-Escherichia coli microbial consortium for mcl-PHA production from lignocellulosic biomass
    Qin, Ruolin
    Zhu, Yinzhuang
    Ai, Mingmei
    Jia, Xiaoqiang
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [13] Pretreatment of lignocellulosic biomass for enhanced biogas production
    Zheng, Yi
    Zhao, Jia
    Xu, Fuqing
    Li, Yebo
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2014, 42 : 35 - 53
  • [14] Potential pre-treatment of lignocellulosic biomass for the enhancement of biomethane production through anaerobic digestion- A review
    Stanley, Jason Thamizhakaran
    Thanarasu, Amudha
    Kumar, P. Senthil
    Periyasamy, Karthik
    Raghunandhakumar, Subramanian
    Periyaraman, Premkumar
    Devaraj, Kubendran
    Dhanasekaran, Anuradha
    Subramanian, Sivanesan
    FUEL, 2022, 318
  • [15] A Review on Fuel Ethanol Production From Lignocellulosic Biomass
    Srivastava, Neha
    Rawat, Rekha
    Oberoi, Harinder Singh
    Ramteke, Pramod W.
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2015, 12 (09) : 949 - 960
  • [16] Effect of enzymatic pretreatment of various lignocellulosic substrates on production of phenolic compounds and biomethane potential
    Schroyen, Michel
    Vervaeren, Han
    Vandepitte, Hanne
    Van Hulle, Stijn W. H.
    Raes, Katleen
    BIORESOURCE TECHNOLOGY, 2015, 192 : 696 - 702
  • [17] Recent Trends in Electricity Generation from Lignocellulosic Biomass-Fueled Microbial Fuel Cells
    Kaur, Pardeep
    Saini, Preeti
    Kaur, Sundeep
    Shah, Maulin P.
    INDIAN JOURNAL OF MICROBIOLOGY, 2024,
  • [18] A new screened microbial consortium OEM2 for lignocellulosic biomass deconstruction and chlorophenols detoxification
    Liang, Jiajin
    Fang, Xiuxiu
    Lin, Yunqin
    Wang, Dehan
    JOURNAL OF HAZARDOUS MATERIALS, 2018, 347 : 341 - 348
  • [19] Multidisciplinary Pretreatment Approaches to Improve the Bio-methane Production from Lignocellulosic Biomass
    Yadav, Monika
    Balan, Venkatesh
    Varjani, Sunita
    Tyagi, Vinay Kumar
    Chaudhary, Gaurav
    Pareek, Nidhi
    Vivekanand, Vivekanand
    BIOENERGY RESEARCH, 2023, 16 (01) : 228 - 247
  • [20] Bioethanol Production from Lignocellulosic Biomass, A Review
    Gamage, Joanne
    Lam, Howard
    Zhang, Zisheng
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2010, 4 (01) : 3 - 11