Parallelization of Adaptive Quantum Channel Discrimination in the Non-Asymptotic Regime

被引:5
作者
Bergh, Bjarne [1 ]
Datta, Nilanjana [1 ]
Salzmann, Robert [1 ]
Wilde, Mark M. [2 ,3 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Louisiana State Univ, Hearne Inst Theoret Phys, Ctr Computat & Technol, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[3] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14850 USA
基金
英国工程与自然科学研究理事会;
关键词
channel discrimination; error exponents; parallel strategies; quantum information theory; shannon theory; adaptive strategies; STRONG CONVERSE; STEINS LEMMA; ASYMPTOTICS; ENTROPY; ERROR; RATES;
D O I
10.1109/TIT.2024.3355929
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate the performance of parallel and adaptive quantum channel discrimination strategies for a finite number of channel uses. It has recently been shown that, in the asymmetric setting with asymptotically vanishing type I error probability, adaptive strategies are asymptotically not more powerful than parallel ones. We extend this result to the non-asymptotic regime with finitely many channel uses, by explicitly constructing a parallel strategy for any given adaptive strategy, and bounding the difference in their performances, measured in terms of the decay rate of the type II error probability per channel use. We further show that all parallel strategies can be optimized over in time polynomial in the number of channel uses, and hence our result can also be used to obtain a poly-time-computable asymptotically tight upper bound on the performance of general adaptive strategies.
引用
收藏
页码:2617 / 2636
页数:20
相关论文
共 64 条
[1]  
Anjos M. F., 2012, International Series in OperationsResearch & Management Science, V166
[2]   A minimax approach to one-shot entropy inequalities [J].
Anshu, Anurag ;
Berta, Mario ;
Jain, Rahul ;
Tomamichel, Marco .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (12)
[3]   Building Blocks for Communication Over Noisy Quantum Networks [J].
Anshu, Anurag ;
Jain, Rahul ;
Warsi, Naqueeb Ahmad .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (02) :1287-1306
[4]   Fast computation of multinomial coefficients [J].
Araujo, Leonardo C. ;
Sansao, Joao P. H. ;
Vale-Cardoso, Adriano S. .
NUMERICAL ALGORITHMS, 2021, 88 (02) :837-851
[5]   Discriminating states:: The quantum Chernoff bound [J].
Audenaert, K. M. R. ;
Calsamiglia, J. ;
Munoz-Tapia, R. ;
Bagan, E. ;
Masanes, Ll. ;
Acin, A. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[6]   Asymptotic error rates in quantum hypothesis testing [J].
Audenaert, K. M. R. ;
Nussbaum, M. ;
Szkola, A. ;
Verstraete, F. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (01) :251-283
[7]   Quantum state discrimination bounds for finite sample size [J].
Audenaert, Koenraad M. R. ;
Mosonyi, Milan ;
Verstraete, Frank .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (12)
[8]   Quantum state discrimination and its applications [J].
Bae, Joonwoo ;
Kwek, Leong-Chuan .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (08)
[9]   On a gap in the proof of the generalised quantum Stein's lemma and its consequences for the reversibility of quantum resources [J].
Berta, Mario ;
Brandao, Fernando G. S. L. ;
Gour, Gilad ;
Lami, Ludovico ;
Plenio, Martin B. ;
Regula, Bartosz ;
Tomamichel, Marco .
QUANTUM, 2023, 7
[10]   One-Shot Rates for Entanglement Manipulation Under Non-entangling Maps [J].
Brandao, Fernando G. S. L. ;
Datta, Nilanjana .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (03) :1754-1760