Enhancement mechanism of the comprehensive performance of all-solid-state polymer electrolytes by halloysite nanotubes: Construction of efficient lithium-ion conduction channels

被引:6
作者
Yang, Zhitao [1 ]
Zhang, Zhen [1 ]
Liu, Yong [1 ]
Fang, Yiping [1 ]
Li, Cheng [1 ]
Cao, Xianwu [1 ]
机构
[1] South China Univ Technol, Natl Engn Res Ctr Novel Equipment Polymer Proc, Sch Mech & Automot Engn,Key Lab Polymer Proc Engn, Minist Educ,Guangdong Prov Key Lab Tech & Equipme, Guangzhou 510641, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Poly(ethylene oxide); Composite polymer electrolyte; Halloysite nanotubes; BATTERIES; TRANSPORT; STABILITY; CARBONATE; DIFFUSION; LIQUID; BOND;
D O I
10.1016/j.jpowsour.2024.234391
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Considering the current issues with poly(ethylene oxide) -based all -solid-state polymer electrolytes (PEO-ASSPEs) employed in lithium -ion batteries (LIBs), such as low ionic conductivity, low lithium -ion transference number, narrow electrochemical stability window, and poor cyclic stability. This study introduces oxygen -vacancy -rich halloysite nanotubes (HNTs) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) into the PEO matrix to fabricate a flexible composite polymer electrolyte (CPEs) via a solvent -free method. The interaction between HNTs and LiTFSI in the PEO matrix serves to mitigate the ionic solvation effect, increase the number of free lithium -ion, and reduce the lithium -ion migration energy barrier. Additionally, the internal framework formed by the mutual stacking of HNTs reduces the number of entanglements in polymer molecular chains, enhances the mobility of the chains, and generates a continuous interface effect, forming fast lithium -ion transport channels. The CPEs prepared in this study are in conformity with the Vogel-Tammann-Fulcher (VTF) empirical equation. The CPE containing 10 wt% HNTs exhibits a high ionic conductivity (7.15 x 10 -4 S cm -1 ) at 25 degrees C, a high lithium -ion transference number (0.600), a wide electrochemical stability window (5.5 V), and excellent cyclic performance (capacity retention of 82.02 % after 100 cycles at 0.1C), satisfying the electrochemical performance requirements for ASSPEs in LIBs.
引用
收藏
页数:12
相关论文
共 64 条
[1]   CATION AND ANION DIFFUSION IN THE AMORPHOUS PHASE OF THE POLYMER ELECTROLYTE (PEO) 8LICF3SO3 [J].
BHATTACHARJA, S ;
SMOOT, SW ;
WHITMORE, DH .
SOLID STATE IONICS, 1986, 18-9 (pt 1) :306-314
[2]   Perspectives for Polymer Electrolytes: A View from Fundamentals of Ionic Conductivity [J].
Bocharova, V. ;
Sokolov, A. P. .
MACROMOLECULES, 2020, 53 (11) :4141-4157
[3]   STEADY-STATE CURRENT FLOW IN SOLID BINARY ELECTROLYTE CELLS [J].
BRUCE, PG ;
VINCENT, CA .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1987, 225 (1-2) :1-17
[4]   Halloysite/Keratin Nanocomposite for Human Hair Photoprotection Coating [J].
Cavallaro, Giuseppe ;
Milioto, Stefana ;
Svetlana, Konnova ;
Fakhrullina, Golnur ;
Akhatova, Farida ;
Lazzara, Giuseppe ;
Fakhrullin, Rawil ;
Lvov, Yuri .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (21) :24348-24362
[5]   Revealing the Superiority of Fast Ion Conductor in Composite Electrolyte for Dendrite-Free Lithium-Metal Batteries [J].
Chen, Hui ;
Zhou, Chun-Jiao ;
Dong, Xin-Rong ;
Yan, Min ;
Liang, Jia-Yan ;
Xin, Sen ;
Wu, Xiong-Wei ;
Guo, Yu-Guo ;
Zeng, Xian-Xiang .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (19) :22978-22986
[6]   Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces [J].
Chen, Yong ;
Wen, Kaihua ;
Chen, Tianhua ;
Zhang, Xiaojing ;
Armand, Michel ;
Chen, Shimou .
ENERGY STORAGE MATERIALS, 2020, 31 :401-433
[7]  
Cheng Zhilin, 2016, Acta Pet. Sin., V32, P1001
[8]   A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles [J].
Choudhury, Snehashis ;
Mangal, Rahul ;
Agrawal, Akanksha ;
Archer, Lynden A. .
NATURE COMMUNICATIONS, 2015, 6
[9]   Increasing the conductivity of crystalline polymer electrolytes [J].
Christie, AM ;
Lilley, SJ ;
Staunton, E ;
Andreev, YG ;
Bruce, PG .
NATURE, 2005, 433 (7021) :50-53
[10]   Synergistically enhanced roles based on 1D ceramic nanowire and 3D nanostructured polymer frameworks for composite electrolytes [J].
Deng, Nanping ;
Luo, Shengbin ;
Zhang, Lugang ;
Feng, Yang ;
Liu, Yong ;
Kang, Weimin ;
Cheng, Bowen .
JOURNAL OF ENERGY STORAGE, 2024, 75