Measure Pseudo-S-asymptotically Bloch-Type Periodicity of Some Semilinear Stochastic Integrodifferential Equations

被引:2
作者
Diop, Amadou [1 ]
Mbaye, Mamadou Moustapha [2 ]
Chang, Yong-Kui [3 ]
N'Guerekata, Gaston Mandata [4 ]
机构
[1] Gaston Berger Univ, Appl Math Sect, Lab Numer Anal & Comp Sci, St Louis, Senegal
[2] Univ Cheikh Anta Diop, Fac Sci & Tech, Dept Math, BP 5005, Dakar, Senegal
[3] Xidian Univ, Sch Math & Stat, Xian 710071, Shaanxi, Peoples R China
[4] Morgan State Univ, NEERLab, Dept Math, Baltimore, MD 21251 USA
关键词
Stochastic processes; Integrodifferential equations; Pseudo-S-asymptotically Bloch-type periodic processes; EVOLUTION-EQUATIONS; MILD SOLUTIONS; EXISTENCE;
D O I
10.1007/s10959-024-01335-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper gives a new property for stochastic processes, called square-mean mu-pseudo-S-asymptotically Bloch-type periodicity. We show how this property is preserved under some operations, such as composition and convolution, for stochastic processes. Our main results extend the classical results on S-asymptotically Bloch-type periodic functions. We also apply our results to some problems involving semilinear stochastic integrodifferential equations in abstract spaces
引用
收藏
页码:2253 / 2276
页数:24
相关论文
共 42 条
[1]  
Abbas S., 2012, Topics in fractional differential equations
[2]   (ω,c)-asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells [J].
Alvarez, Edgardo ;
Castillo, Samuel ;
Pinto, Manuel .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (01) :305-319
[3]  
Bloch F., 1929, Z. Phys., V52, P555, DOI DOI 10.1007/BF01339455
[4]   New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications [J].
Blot, Joel ;
Cieutat, Philippe ;
Ezzinbi, Khalil .
APPLICABLE ANALYSIS, 2013, 92 (03) :493-526
[5]   Measure theory and pseudo almost automorphic functions: New developments and applications [J].
Blot, Joel ;
Cieutat, Philippe ;
Ezzinbi, Khalil .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) :2426-2447
[6]  
Brindle D., 2020, Electron. J. Differ. Equ, V2020, P1, DOI [10.58997/ejde.2020.30, DOI 10.58997/EJDE.2020.30]
[7]  
Brindle D., 2019, Nonlinear Stud, V26, P575
[8]  
Brindle D., 2019, PanAmer. Math. J, V29, P63
[9]   Existence of S-asymptotically ω-periodic solutions to abstract integro-differential equations [J].
Carvalho dos Santos, Jose Paulo ;
Henriquez, Hernan R. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 :109-118
[10]  
Chang YK., 2022, Bloch-Type Periodic Functions: Theory and Applications to Evolution Equations, DOI [10.1142/12780, DOI 10.1142/12780]