Metals Recovery from Spent Lithium-ion Batteries Cathode Via Hydrogen Reduction-water Leaching-carbothermic or Hydrogen Reduction Process

被引:1
作者
Rostami, Tahereh [1 ]
Khoshandam, Behnam [1 ]
机构
[1] Semnan Univ, Fac Chem Petr & Gas Engn, Semnan, Iran
关键词
Carbothermic; Hydrogen reduction; Second thermal process; Recycling precious metals; REDUCING AGENT; LI; TECHNOLOGY; CARBONATE; COBALT; LICOO2; SEPARATION; GRAPHITE; RECYCLE; ENERGY;
D O I
10.1007/s42461-024-00988-2
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
In the present paper, the recovery of mixed spent cathodes is evaluated and performed through a hydrogen reduction process. Firstly, the lithium is isolated by the hydrogen reduction process as LiOH at 600 degrees C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{<^>\circ{\rm C} }$$\end{document} for 15 min with 10% H2 with a flow rate of 350 ml/min. In the second step, 98.37% Li is recovered through water-leaching of hydrogen reduction products at 100 degrees C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{<^>\circ{\rm C} }$$\end{document} for 90 min with 50 ml/g. The filtration residual is reduced by using a carbothermic reduction process and a hydrogen reduction method. The first one is performed under an Ar atmosphere at 900 degrees C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{<^>\circ{\rm C} }$$\end{document} for 210 min and the second one is conducted at 800 degrees C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{<^>\circ{\rm C} }$$\end{document} for 150 min. The purer products are achieved using the hydrogen reduction method at lower temperatures and shorter holding times compared to a carbothermic reduction process with recovery percentages of 100%, 99.06%, and 70% for Ni, Co, and Mn, respectively. Given the importance of reducing the emission of toxic gases, the hydrogen reduction process is also a promising method for metal recycling. The obtained results also demonstrated that Li, Co, Ni, and Mn can be effectively separated from the mixed cathode material through the hydrogen reduction process as a sustainable and environmentally friendly recycling process. This study provides an impressive understanding of the hydrogen reduction process and valuable guidance for a larger-scale hydrogen reduction process.
引用
收藏
页码:1485 / 1495
页数:11
相关论文
共 54 条
  • [31] Recovery of valuable elements from spent Li-batteries
    Paulino, Jessica Frontino
    Busnardo, Natalia Giovanini
    Afonso, Julio Carlos
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2008, 150 (03) : 843 - 849
  • [32] Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system
    Peng, Chao
    Liu, Fupeng
    Wang, Zulin
    Wilson, Benjamin P.
    Lundstrom, Mari
    [J]. JOURNAL OF POWER SOURCES, 2019, 415 : 179 - 188
  • [33] Carbothermal Reduction of Spent Mobile Phones Batteries for the Recovery of Lithium, Cobalt, and Manganese Values
    Pindar, Sanjay
    Dhawan, Nikhil
    [J]. JOM, 2019, 71 (12) : 4483 - 4491
  • [34] Reductive Thermal Treatment of LiCoO2 from End-of-Life Lithium-Ion Batteries with Hydrogen
    Pinegar, Haruka
    Marthi, Rajashekhar
    Yang, Peilin
    Smith, York R.
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (22): : 7447 - 7453
  • [35] Reduction kinetics of nickel oxide by methane as reducing agent based on thermogravimetry
    Rashidi, H.
    Ebrahim, H. Ale
    Dabir, B.
    [J]. THERMOCHIMICA ACTA, 2013, 561 : 41 - 48
  • [36] Recovery of valuable metals from spent lithium ion batteries by smelting reduction process based on FeO-SiO2-Al2O3 slag system
    Ren, Guo-xing
    Xiao, Song-wen
    Xie, Mei-qiu
    Pan, Bing
    Chen, Jian
    Wang, Feng-gang
    Xia, Xing
    [J]. TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2017, 27 (02) : 450 - 456
  • [37] Recovery of lithium, cobalt, nickel, and manganese from spent lithium-ion batteries through a wet-thermal process
    Rostami, Tahereh
    Khoshandam, Behnam
    Maroufi, Samane
    [J]. MATERIALS RESEARCH BULLETIN, 2022, 153
  • [38] Sulfation Roasting Mechanism for Spent Lithium-Ion Battery Metal Oxides Under SO2-O2-Ar Atmosphere
    Shi, Junjie
    Peng, Chao
    Chen, Min
    Li, Yun
    Eric, Hurman
    Klemettinen, Lassi
    Lundstrom, Mari
    Taskinen, Pekka
    Jokilaakso, Ari
    [J]. JOM, 2019, 71 (12) : 4473 - 4482
  • [39] Recovery of Cobalt and Lithium Values from Discarded Li-Ion Batteries
    Vishvakarma, Shubham
    Dhawan, Nikhil
    [J]. JOURNAL OF SUSTAINABLE METALLURGY, 2019, 5 (02) : 204 - 209
  • [40] Volkl J., 1978, Hydrogen in metals I, P321