Metals Recovery from Spent Lithium-ion Batteries Cathode Via Hydrogen Reduction-water Leaching-carbothermic or Hydrogen Reduction Process

被引:1
作者
Rostami, Tahereh [1 ]
Khoshandam, Behnam [1 ]
机构
[1] Semnan Univ, Fac Chem Petr & Gas Engn, Semnan, Iran
关键词
Carbothermic; Hydrogen reduction; Second thermal process; Recycling precious metals; REDUCING AGENT; LI; TECHNOLOGY; CARBONATE; COBALT; LICOO2; SEPARATION; GRAPHITE; RECYCLE; ENERGY;
D O I
10.1007/s42461-024-00988-2
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
In the present paper, the recovery of mixed spent cathodes is evaluated and performed through a hydrogen reduction process. Firstly, the lithium is isolated by the hydrogen reduction process as LiOH at 600 degrees C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{<^>\circ{\rm C} }$$\end{document} for 15 min with 10% H2 with a flow rate of 350 ml/min. In the second step, 98.37% Li is recovered through water-leaching of hydrogen reduction products at 100 degrees C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{<^>\circ{\rm C} }$$\end{document} for 90 min with 50 ml/g. The filtration residual is reduced by using a carbothermic reduction process and a hydrogen reduction method. The first one is performed under an Ar atmosphere at 900 degrees C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{<^>\circ{\rm C} }$$\end{document} for 210 min and the second one is conducted at 800 degrees C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{<^>\circ{\rm C} }$$\end{document} for 150 min. The purer products are achieved using the hydrogen reduction method at lower temperatures and shorter holding times compared to a carbothermic reduction process with recovery percentages of 100%, 99.06%, and 70% for Ni, Co, and Mn, respectively. Given the importance of reducing the emission of toxic gases, the hydrogen reduction process is also a promising method for metal recycling. The obtained results also demonstrated that Li, Co, Ni, and Mn can be effectively separated from the mixed cathode material through the hydrogen reduction process as a sustainable and environmentally friendly recycling process. This study provides an impressive understanding of the hydrogen reduction process and valuable guidance for a larger-scale hydrogen reduction process.
引用
收藏
页码:1485 / 1495
页数:11
相关论文
共 54 条
  • [1] Adaptation of minerals processing operations for lithium-ion (LiBs) and nickel metal hydride (NiMH) batteries recycling: Critical review
    Al-Thyabat, S.
    Nakamura, T.
    Shibata, E.
    Iizuka, A.
    [J]. MINERALS ENGINEERING, 2013, 45 : 4 - 17
  • [2] The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction
    Dunn, J. B.
    Gaines, L.
    Kelly, J. C.
    James, C.
    Gallagher, K. G.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (01) : 158 - 168
  • [3] Reduction, reuse and recycle of spent Li-ion batteries for automobiles: A review
    Fujita, Toyohisa
    Chen, Hao
    Wang, Kai-tuo
    He, Chun-lin
    Wang, You-bin
    Dodbiba, Gjergj
    Wei, Yue-zhou
    [J]. INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2021, 28 (02) : 179 - 192
  • [4] Lithium-ion battery recycling processes: Research towards a sustainable course
    Gaines, Linda
    [J]. SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2018, 17
  • [5] Lithium recovery from the spent lithium-ion batteries by commercial acid-resistant nanofiltration membranes: A comparative study
    Gao, Sheng-Li
    Qin, Zi-Xuan
    Wang, Bo-Fei
    Huang, Jie
    Xu, Zhen-Liang
    Tang, Yong-Jian
    [J]. DESALINATION, 2024, 572
  • [6] Development of a recycling process for Li-ion batteries
    Georgi-Maschler, T.
    Friedrich, B.
    Weyhe, R.
    Heegn, H.
    Rutz, M.
    [J]. JOURNAL OF POWER SOURCES, 2012, 207 : 173 - 182
  • [7] Development and optimization of a modified process for producing the battery grade LiOH: Optimization of energy and water consumption
    Grageda, Mario
    Gonzalez, Alonso
    Alavia, Wilson
    Ushak, Svetlana
    [J]. ENERGY, 2015, 89 : 667 - 677
  • [8] Lithium in the Green Energy Transition: The Quest for Both Sustainability and Security
    Graham, John D.
    Rupp, John A.
    Brungard, Eva
    [J]. SUSTAINABILITY, 2021, 13 (20)
  • [9] Modeling the potential impact of future lithium recycling on lithium demand in China: A dynamic SFA approach
    Guo, Xueyi
    Zhang, Jingxi
    Tian, Qinghua
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 137
  • [10] Current and Prospective Li-Ion Battery Recycling and Recovery Processes
    Heelan, Joseph
    Gratz, Eric
    Zheng, Zhangfeng
    Wang, Qiang
    Chen, Mengyuan
    Apelian, Diran
    Wang, Yan
    [J]. JOM, 2016, 68 (10) : 2632 - 2638