Flexible Alignment Super-Resolution Network for Multi-Contrast Magnetic Resonance Imaging

被引:6
作者
Liu, Yiming [1 ]
Zhang, Mengxi [2 ]
Jiang, Bo [3 ]
Hou, Bo [3 ]
Liu, Dan [3 ]
Chen, Jie [4 ]
Lian, Heqing [1 ]
机构
[1] Xiao Ying AI Lab, Beijing 100085, Peoples R China
[2] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[3] Peking Union Med Coll Hosp, Beijing 100730, Peoples R China
[4] Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
关键词
Superresolution; Magnetic resonance imaging; Semantics; Feature extraction; Hafnium; Task analysis; Image reconstruction; Feature alignment; feature fusion; magnetic resonance imaging; reference-based image super-resolution; MRI; SINGLE;
D O I
10.1109/TMM.2023.3330085
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Super-resolution is essential in improving the image quality of Magnetic Resonance Imaging (MRI). Existing MRI Super-Resolution methods leverage multi-contrast MRI and achieve satisfied effects. However, these methods perform alignment by calculating the similarity of single-scale semantic features between reference images and low-resolution images, which causes misalignment and limits the performance of MRI Super-Resolution. To tackle this problem, we propose the Flexible Alignment Super-resolution Network (FASR-Net) for multi-contrast MRI Super-resolution, which explores the interaction of multi-scale features. To this end, we first use the feature extractor to generate multi-scale features, including hierarchical features and semantic pyramid features. Subsequently, we introduce the Hierarchical-Feature Alignment (HF) module and the Semantic-Pyramid-Feature Alignment (SF) module to align hierarchical features and semantic pyramid features, respectively. Finally, the Cross-Hierarchical Progressive Fusion (CHPF) module fuses these aligned features at different scales, which further improves the model's performance. Extensive experiments on FastMRI and IXI datasets show that FASR-net achieves the most competitive results over state-of-the-art approaches.
引用
收藏
页码:5159 / 5169
页数:11
相关论文
共 38 条
[11]   Robust Reference-based Super-Resolution via C2-Matching [J].
Jiang, Yuming ;
Chan, Kelvin C. K. ;
Wang, Xintao ;
Loy, Chen Change ;
Liu, Ziwei .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :2103-2112
[12]   fastMRI: A Publicly Available Raw k-Space and DICOM Dataset of Knee Images for Accelerated MR Image Reconstruction Using Machine Learning [J].
Knoll, Florian ;
Zbontar, Jure ;
Sriram, Anuroop ;
Muckley, Matthew J. ;
Bruno, Mary ;
Defazio, Aaron ;
Parente, Marc ;
Geras, Krzysztof J. ;
Katsnelson, Joe ;
Chandarana, Hersh ;
Zhang, Zizhao ;
Drozdzalv, Michal ;
Romero, Adriana ;
Rabbat, Michael ;
Vincent, Pascal ;
Pinkerton, James ;
Wang, Duo ;
Yakubova, Nafissa ;
Owens, Erich ;
Zitnick, C. Lawrence ;
Recht, Michael P. ;
Sodickson, Daniel K. ;
Lui, Yvonne W. .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2020, 2 (01)
[13]   Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network [J].
Ledig, Christian ;
Theis, Lucas ;
Huszar, Ferenc ;
Caballero, Jose ;
Cunningham, Andrew ;
Acosta, Alejandro ;
Aitken, Andrew ;
Tejani, Alykhan ;
Totz, Johannes ;
Wang, Zehan ;
Shi, Wenzhe .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :105-114
[14]   Learning with Privileged Information for Efficient Image Super-Resolution [J].
Lee, Wonkyung ;
Lee, Junghyup ;
Kim, Dohyung ;
Ham, Bumsub .
COMPUTER VISION - ECCV 2020, PT XXIV, 2020, 12369 :465-482
[15]   SRDiff: Single image super-resolution with diffusion probabilistic models [J].
Li, Haoying ;
Yang, Yifan ;
Chang, Meng ;
Chen, Shiqi ;
Feng, Huajun ;
Xu, Zhihai ;
Li, Qi ;
Chen, Yueting .
NEUROCOMPUTING, 2022, 479 :47-59
[16]   Exploring Plain Vision Transformer Backbones for Object Detection [J].
Li, Yanghao ;
Mao, Hanzi ;
Girshick, Ross ;
He, Kaiming .
COMPUTER VISION, ECCV 2022, PT IX, 2022, 13669 :280-296
[17]   High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network [J].
Liang, Jie ;
Zeng, Hui ;
Zhang, Lei .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :9387-9395
[18]   SwinIR: Image Restoration Using Swin Transformer [J].
Liang, Jingyun ;
Cao, Jiezhang ;
Sun, Guolei ;
Zhang, Kai ;
Van Gool, Luc ;
Timofte, Radu .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, :1833-1844
[19]   Enhanced Deep Residual Networks for Single Image Super-Resolution [J].
Lim, Bee ;
Son, Sanghyun ;
Kim, Heewon ;
Nah, Seungjun ;
Lee, Kyoung Mu .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1132-1140
[20]   MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution [J].
Lu, Liying ;
Li, Wenbo ;
Tao, Xin ;
Lu, Jiangbo ;
Jia, Jiaya .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :6364-6373