Infinitely many dichotomous solutions for the Schrödinger-Poisson system

被引:0
作者
He, Yuke [1 ,2 ]
Li, Benniao [1 ,2 ]
Long, Wei [1 ,2 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Peoples R China
[2] Jiangxi Normal Univ, Jiangxi Prov Ctr Appl Math, Nanchang 330022, Peoples R China
基金
中国国家自然科学基金;
关键词
dichotomous solutions; non-degeneracy; Schr & ouml; dinger-Poisson system; SCHRODINGER-POISSON PROBLEM; SIGN-CHANGING SOLUTIONS; POSITIVE SOLUTIONS; BOUND-STATES; SPHERES; EQUATION;
D O I
10.1007/s11425-023-2173-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following Schr & ouml;dinger-Poisson system where epsilon is a small parameter, , N is an element of [3, 6], and V(x) and K(x) are potential functions with different decay at infinity. We first prove the non-degeneracy of a radial low-energy solution. Moreover, by using the non-degenerate solution, we construct a new type of infinitely many solutions for the above system, which are called "dichotomous solutions", i.e., these solutions concentrate both in a bounded domain and near infinity.
引用
收藏
页码:2049 / 2070
页数:22
相关论文
共 21 条
[1]   On the Schrodinger-Maxwell equations under the effect of a general nonlinear term [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :779-791
[2]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[3]  
Benci V., 1998, TOPOL METHOD NONL AN, V11, P283
[4]  
Cao D, 2021, CAM ST AD M, P1, DOI 10.1017/9781108872638
[5]   On bound states concentrating on spheres for the Maxwell-Schrodinger equation [J].
D'Aprile, T ;
Wei, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (01) :321-342
[6]   Existence of multi-bump solutions for the Schrodinger-Poisson system [J].
Ding, Hui-Sheng ;
Li, Benniao ;
Ye, Jianghua .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 503 (02)
[7]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[8]   Non-degeneracy and existence of new solutions for the Schrodinger equations [J].
Guo, Yuxia ;
Musso, Monica ;
Peng, Shuangjie ;
Yan, Shusen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 326 :254-279
[9]  
Ianni I, 2008, ADV NONLINEAR STUD, V8, P573
[10]   Non-radial sign-changing solutions for the Schrodinger-Poisson problem in the semiclassical limit [J].
Ianni, Isabella ;
Vaira, Giusi .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (04) :741-776