Functional mapping of the somatosensory cortex using noninvasive fMRI and touch in awake dogs

被引:5
作者
Guran, C. -N. Alexandrina [1 ,2 ]
Boch, Magdalena [1 ]
Sladky, Ronald [1 ]
Lonardo, Lucrezia [3 ,4 ]
Karl, Sabrina [3 ,4 ]
Huber, Ludwig [3 ,4 ]
Lamm, Claus [1 ]
机构
[1] Univ Vienna, Fac Psychol, Dept Cognit Emot & Methods Psychol, Social Cognit & Affect Neurosci Unit, Vienna, Austria
[2] Univ Vienna, Vienna Cognit Sci Hub, Vienna, Austria
[3] Med Univ Vienna, Univ Vet Med Vienna, Messerli Res Inst, Comparat Cognit, Vienna, Austria
[4] Univ Vienna, Vienna, Austria
基金
奥地利科学基金会;
关键词
Somatosensation; Dog; fMRI; Touch; Higher-order cognition; TACTILE SENSIBILITY; CEREBRAL-CORTEX; BRAIN; REPRESENTATION; MONKEY; MOTOR; MRI; CONNECTIVITY; ORGANIZATION; LATERALITY;
D O I
10.1007/s00429-024-02798-0
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
Dogs are increasingly used as a model for neuroscience due to their ability to undergo functional MRI fully awake and unrestrained, after extensive behavioral training. Still, we know rather little about dogs' basic functional neuroanatomy, including how basic perceptual and motor functions are localized in their brains. This is a major shortcoming in interpreting activations obtained in dog fMRI. The aim of this preregistered study was to localize areas associated with somatosensory processing. To this end, we touched N = 22 dogs undergoing fMRI scanning on their left and right flanks using a wooden rod. We identified activation in anatomically defined primary and secondary somatosensory areas (SI and SII), lateralized to the contralateral hemisphere depending on the side of touch, and importantly also activation beyond SI and SII, in the cingulate cortex, right cerebellum and vermis, and the sylvian gyri. These activations may partly relate to motor control (cerebellum, cingulate), but also potentially to higher-order cognitive processing of somatosensory stimuli (rostral sylvian gyri), and the affective aspects of the stimulation (cingulate). We also found evidence for individual side biases in a vast majority of dogs in our sample, pointing at functional lateralization of somatosensory processing. These findings not only provide further evidence that fMRI is suited to localize neuro-cognitive processing in dogs, but also expand our understanding of in vivo touch processing in mammals, beyond classically defined primary and secondary somatosensory cortices. To understand brain function and evolution, it is necessary to look beyond the human lineage. This study provides insights into the engagement of brain areas related to somatosensation using whole-brain non-invasive neuroimaging of trained, non-sedated, and unrestrained pet dogs. It showcases again the usefulness of non-invasive methods, in particular fMRI, for investigating higher-order brain function and advances the mapping of brain functions in dogs; using this non-invasive approach without sedation, we are able to identify previously unknown potential higher-order processing areas and offer a quantification of touch processing lateralization.
引用
收藏
页码:1193 / 1207
页数:15
相关论文
共 71 条
[1]   ManyDogs Project: A Big Team Science Approach to Investigating Canine Behavior and Cognition [J].
Alberghina, Daniela ;
Bray, Emily E. ;
Buchsbaum, Daphna ;
Byosiere, Sarah-Elizabeth ;
Espinosa, Julia ;
Gnanadesikan, Gitanjali E. ;
Guran, C. -N. Alexandrina ;
Hare, Elizabeth ;
Horschler, Daniel J. ;
Huber, Ludwig ;
Kuhlmeier, Valerie A. ;
MacLean, Evan L. ;
Pelgrim, Madeline H. ;
Perez, Bryan ;
Ravid-Schurr, Dana ;
Rothkoff, Liza ;
Sexton, Courtney L. ;
Silver, Zachary A. ;
Stevens, Jeffrey R. .
COMPARATIVE COGNITION & BEHAVIOR REVIEWS, 2023, 18 :59-77
[2]   Neural mechanisms for lexical processing in dogs [J].
Andics, A. ;
Gabor, A. ;
Gacsi, M. ;
Farago, T. ;
Szabo, D. ;
Miklosi, A. .
SCIENCE, 2016, 353 (6303) :1030-1032
[3]   Voice-Sensitive Regions in the Dog and Human Brain Are Revealed by Comparative fMRI [J].
Andics, Attila ;
Gacsi, Marta ;
Farago, Tamas ;
Kis, Anna ;
Miklosi, Adam .
CURRENT BIOLOGY, 2014, 24 (05) :574-578
[4]   Neuroanatomical asymmetry in the canine brain [J].
Barton, Sophie A. ;
Kent, Marc ;
Hecht, Erin E. .
BRAIN STRUCTURE & FUNCTION, 2023, 228 (07) :1657-1669
[5]  
Behroozi M, 2019, THESIS RUHR U BOCHUM
[6]   Functional MRI in the Nile crocodile: a new avenue for evolutionary [J].
Behroozi, Mehdi ;
Billings, Brendon K. ;
Helluy, Xavier ;
Manger, Paul R. ;
Guentuerkuen, Onur ;
Stroeckens, Felix .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2018, 285 (1877)
[7]   Functional MRI in Awake Unrestrained Dogs [J].
Berns, Gregory S. ;
Brooks, Andrew M. ;
Spivak, Mark .
PLOS ONE, 2012, 7 (05)
[8]  
Boch M., 2024, DOMESTIC DOGS COMP M, DOI [10.31234/osf.io/wc8u5, DOI 10.31234/OSF.IO/WC8U5]
[9]  
Boch M., 2023, 202310 BIORXIV, P2023
[10]   Functionally analogous body- and animacy-responsive areas are present in the dog (Canis familiaris) and human occipito-temporal lobe [J].
Boch, Magdalena ;
Wagner, Isabella C. ;
Karl, Sabrina ;
Huber, Ludwig ;
Lamm, Claus .
COMMUNICATIONS BIOLOGY, 2023, 6 (01)