Probabilistic state estimation in district heating grids using deep neural network

被引:8
作者
Yi, Gaowei [1 ]
Zhuang, Xinlin [2 ]
Li, Yan [1 ]
机构
[1] Ocean Univ China, Coll Engn, Sansha Rd 1299, Qingdao 266000, Shandong, Peoples R China
[2] East China Normal Univ, Sch Comp Sci & Technol, North Zhongshan Rd 3663, Shanghai 200062, Peoples R China
关键词
Probabilistic state estimation; Deep learning; Fully-connected neural network; Convolutional neural network; Recurrent neural network; SYSTEMS;
D O I
10.1016/j.segan.2024.101353
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Probabilistic state estimation is critical for operating and controlling district heating grids efficiently. However, computational bottlenecks of traditional solvers limit the feasibility of uncertainty-aware Bayesian estimation. This paper proposes using deep neural networks (DNNs) to enable fast and accurate posterior estimation. Fullyconnected neural networks (FCNNs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs) are evaluated as candidate approximators of the physical model. Markov chain Monte Carlo sampling in the heat exchange space is leveraged to generate posterior samples. Experiments on a benchmark heating grid demonstrate FCNNs can efficiently learn the mapping from heat exchanges to network states. A FCNN trained on 20 training epochs after hyperparameter optimization provides the best approximation accuracy and uncertainty estimates, outperforming prior methods based on Deep Neural Networks. The results highlight the potential of data -driven deep learning models for probabilistic state estimation. The proposed framework could enable real -time uncertainty-aware control and decision-making for future intelligent district heating grids.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] An Intelligent Vehicle Price Estimation Approach Using a Deep Neural Network Model
    Alnajim, Thuraya
    Alshahrani, Nouf
    Asiri, Omar
    WORLD ELECTRIC VEHICLE JOURNAL, 2024, 15 (08):
  • [32] A Framework for Chili Fruits Maturity Estimation using Deep Convolutional Neural Network
    Zainudin, M. N. Shah
    Hussin, Najihah
    Saad, W. H. Mohd
    Radzi, S. Mohd
    Noh, Z. Mohd
    Sulaiman, N. A.
    Razak, M. S. J. A.
    PRZEGLAD ELEKTROTECHNICZNY, 2021, 97 (12): : 77 - 81
  • [33] Estimation Method for Magnetization Distribution in Permanent Magnet Using Deep Neural Network
    Sasaki, Hidenori
    Takasu, Daichi
    Nakamura, Narichika
    Okamoto, Yoshifumi
    TWENTIETH BIENNIAL IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (IEEE CEFC 2022), 2022,
  • [34] A deep convolutional neural network for the estimation of gas chromatographic retention indices
    Matyushin, Dmitriy D.
    Sholokhova, Anastasia Yu.
    Buryak, Aleksey K.
    JOURNAL OF CHROMATOGRAPHY A, 2019, 1607
  • [35] Optimization of District Heating Network Parameters in Steady-State Operation
    Hari, Sai Krishna K.
    Zlotnik, Anatoly
    Srinivasan, Shriram
    Sundar, Kaarthik
    Ewers, Mary
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2025, 17 (01)
  • [36] Improving Precipitation Estimation Using Convolutional Neural Network
    Pan, Baoxiang
    Hsu, Kuolin
    AghaKouchak, Amir
    Sorooshian, Soroosh
    WATER RESOURCES RESEARCH, 2019, 55 (03) : 2301 - 2321
  • [37] Systems Modeling Using Deep Elman Neural Network
    Salah, Latifa Belhaj
    Fourati, Fathi
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2019, 9 (02) : 3881 - 3886
  • [38] Classification of Car Parts Using Deep Neural Network
    Khanal, Salik Ram
    Amorim, Eurico Vasco
    Filipe, Vitor
    CONTROLO 2020, 2021, 695 : 582 - 591
  • [39] Food Calorie Estimation using Convolutional Neural Network
    Kasyap, V. Balaji
    Jayapandian, N.
    ICSPC'21: 2021 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION (ICPSC), 2021, : 666 - 670
  • [40] Estimation of Cardiac Short Axis Slice Levels with a Cascaded Deep Convolutional and Recurrent Neural Network Model
    Ho, Namgyu
    Kim, Yoon-Chul
    TOMOGRAPHY, 2022, 8 (06) : 2749 - 2760