Probabilistic state estimation in district heating grids using deep neural network

被引:8
|
作者
Yi, Gaowei [1 ]
Zhuang, Xinlin [2 ]
Li, Yan [1 ]
机构
[1] Ocean Univ China, Coll Engn, Sansha Rd 1299, Qingdao 266000, Shandong, Peoples R China
[2] East China Normal Univ, Sch Comp Sci & Technol, North Zhongshan Rd 3663, Shanghai 200062, Peoples R China
关键词
Probabilistic state estimation; Deep learning; Fully-connected neural network; Convolutional neural network; Recurrent neural network; SYSTEMS;
D O I
10.1016/j.segan.2024.101353
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Probabilistic state estimation is critical for operating and controlling district heating grids efficiently. However, computational bottlenecks of traditional solvers limit the feasibility of uncertainty-aware Bayesian estimation. This paper proposes using deep neural networks (DNNs) to enable fast and accurate posterior estimation. Fullyconnected neural networks (FCNNs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs) are evaluated as candidate approximators of the physical model. Markov chain Monte Carlo sampling in the heat exchange space is leveraged to generate posterior samples. Experiments on a benchmark heating grid demonstrate FCNNs can efficiently learn the mapping from heat exchanges to network states. A FCNN trained on 20 training epochs after hyperparameter optimization provides the best approximation accuracy and uncertainty estimates, outperforming prior methods based on Deep Neural Networks. The results highlight the potential of data -driven deep learning models for probabilistic state estimation. The proposed framework could enable real -time uncertainty-aware control and decision-making for future intelligent district heating grids.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Ghost Imaging with Probability Estimation Using Convolutional Neural Network* - Improving Estimation Accuracy Using Parallel Convolutional Neural Network -
    Kataoka, Shoma
    Mizutani, Yasuhiro
    Uenohara, Tsutomu
    Takaya, Yasuhiro
    OPTICAL TECHNOLOGY AND MEASUREMENT FOR INDUSTRIAL APPLICATIONS CONFERENCE 2021, 2021, 11927
  • [22] Deep convolutional neural network for drowsy student state detection
    Zhao, Gang
    Liu, Shan
    Wang, Qi
    Hu, Tao
    Chen, Yawen
    Lin, Luyu
    Zhao, Dasheng
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2018, 30 (23)
  • [23] Generating probabilistic predictions using mean-variance estimation and echo state network
    Yao, Wei
    Zeng, Zhigang
    Lian, Cheng
    NEUROCOMPUTING, 2017, 219 : 536 - 547
  • [24] Real-time head pose estimation using multi-task deep neural network
    Ahn, Byungtae
    Choi, Dong-Geol
    Park, Jaesik
    Kweon, In So
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 103 : 1 - 12
  • [25] A novel deep capsule neural network for remaining useful life estimation
    Ruiz-Tagle Palazuelos, Andres
    Lopez Droguett, Enrique
    Pascual, Rodrigo
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2020, 234 (01) : 151 - 167
  • [26] Story Point Estimation Using Issue Reports With Deep Attention Neural Network
    Kassem, Haithem
    Mahar, Khaled
    Saad, Amani A.
    E-INFORMATICA SOFTWARE ENGINEERING JOURNAL, 2023, 17 (01)
  • [27] KERNEL ESTIMATION FOR MOTION BLUR REMOVAL USING DEEP CONVOLUTIONAL NEURAL NETWORK
    Lu, Yanan
    Xie, Fengying
    Jiang, Zhiguo
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3755 - 3759
  • [28] Image operator forensics and sequence estimation using robust deep neural network
    Agarwal, Saurabh
    Jung, Ki-Hyun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) : 47431 - 47454
  • [29] Image operator forensics and sequence estimation using robust deep neural network
    Saurabh Agarwal
    Ki-Hyun Jung
    Multimedia Tools and Applications, 2024, 83 : 47431 - 47454
  • [30] Remote Atrial Fibrillation Burden Estimation Using Deep Recurrent Neural Network
    Chocron, Armand
    Oster, Julien
    Biton, Shany
    Mandel, Franck
    Elbaz, Meyer
    Zeevi, Yehoshua Y.
    Behar, Joachim A.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (08) : 2447 - 2455