Estimation of Daily Ground Level Air Pollution in Italian Municipalities with Machine Learning Models Using Sentinel-5P and ERA5 Data

被引:1
作者
Fania, Alessandro [1 ,2 ]
Monaco, Alfonso [1 ,2 ]
Pantaleo, Ester [1 ,2 ]
Maggipinto, Tommaso [1 ,2 ]
Bellantuono, Loredana [2 ,3 ]
Cilli, Roberto [1 ,2 ]
Lacalamita, Antonio [1 ,2 ]
La Rocca, Marianna [1 ,2 ]
Tangaro, Sabina [2 ,4 ]
Amoroso, Nicola [2 ,5 ]
Bellotti, Roberto [1 ,2 ]
机构
[1] Univ Bari Aldo Moro, Dipartimento Interateneo Fis M Merlin, Via G Amendola 173, I-70125 Bari, Italy
[2] Ist Nazl Fis Nucleare INFN, Sez Bari, Via A Orabona 4, I-70125 Bari, Italy
[3] Univ Bari Aldo Moro, Dipartimento Biomed Traslazionale & Neurosci DiBra, Piazza G Cesare 11, I-70124 Bari, Italy
[4] Univ Bari Aldo Moro, Dipartimento Sci Suolo Pianta & Alimenti, Via A Orabona 4, I-70125 Bari, Italy
[5] Univ Bari Aldo Moro, Dipartimento Farm Sci Farmaco, Via A Orabona 4, I-70125 Bari, Italy
关键词
air pollution; satellite data; machine learning; explainable artificial intelligence; NITROGEN-DIOXIDE; OZONE; ATMOSPHERE; QUALITY; PM2.5; PM10;
D O I
10.3390/rs16071206
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recent years have witnessed an increasing interest in air pollutants and their effects on human health. More generally, it has become evident how human, animal and environmental health are deeply interconnected within a One Health framework. Ground level air monitoring stations are sparse and thus have limited coverage due to high costs. Satellite and reanalysis data represent an alternative with high spatio-temporal resolution. The idea of this work is to build an Artificial Intelligence model for the estimation of surface-level daily concentrations of air pollutants over the entire Italian territory using satellite, climate reanalysis, geographical and social data. As ground truth we use data from the monitoring stations of the Regional Environmental Protection Agency (ARPA) covering the period 2019-2022 at municipal level. The analysis compares different models and applies an Explainable Artificial Intelligence approach to evaluate the role of individual features in the model. The best model reaches an average R-2 of 0.84 +/- 0.01 and MAE of 5.00 +/- 0.01 mu g/m(3 )across all pollutants which compare well with the body of literature. The XAI analysis highlights the pivotal role of satellite and climate reanalysis data. Our work can facilitate One Health surveys and help researchers and policy makers.
引用
收藏
页数:16
相关论文
共 48 条
[1]  
[Anonymous], 2021, XGBoost documentation
[2]  
[Anonymous], 2023, Sentinel-5P
[3]  
arpa, ARPA Data-Puglia Region
[4]  
arpalazio, ARPA Data-Lazio Region
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   Cross-validation methods [J].
Browne, MW .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2000, 44 (01) :108-132
[7]  
Bucsela E., 2007, P AGU FALL M ABSTRAC, V2007
[8]   Five Years of Dust Episodes at the Southern Italy GAW Regional Coastal Mediterranean Observatory: Multisensors and Modeling Analysis [J].
Calidonna, Claudia Roberta ;
Avolio, Elenio ;
Gulli, Daniel ;
Ammoscato, Ivano ;
De Pino, Mariafrancesca ;
Donateo, Antonio ;
Lo Feudo, Teresa .
ATMOSPHERE, 2020, 11 (05)
[9]   Evidence of an increasing NO2/NOX emissions ratio from road traffic emissions [J].
Carslaw, DC .
ATMOSPHERIC ENVIRONMENT, 2005, 39 (26) :4793-4802
[10]   Estimating Daily NO2 Ground Level Concentrations Using Sentinel-5P and Ground Sensor Meteorological Measurements [J].
Cedeno Jimenez, Jesus Rodrigo ;
Pugliese Viloria, Angelly de Jesus ;
Brovelli, Maria Antonia .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (03)