GENERAL DECAY OF SOLUTIONS FOR A VISCOELASTIC EQUATION WITH BALAKRISHNAN-TAYLOR DAMPING AND NONLINEAR BOUNDARY DAMPING-SOURCE INTERACTIONS

被引:0
作者
吴舜堂 [1 ]
机构
[1] General Education Center, National Taipei University of Technology
关键词
Balakrishnan-Taylor damping; global existence; general decay; relaxation function; viscoelastic equation;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
A viscoelastic equation with Balakrishnan-Taylor damping and nonlinear boundary/interior sources is considered in a bounded domain. Under appropriate assumptions imposed on the source and the damping, we establish uniform decay rate of the solution energy in terms of the behavior of the nonlinear feedback and the relaxation function, without setting any restrictive growth assumptions on the damping at the origin and weakening the usual assumptions on the relaxation function.
引用
收藏
页码:981 / 994
页数:14
相关论文
共 10 条
[1]  
ELASTIC MEMBRANE EQUATION WITH MEMORY TERM AND NONLINEAR BOUNDARY DAMPING:GLOBAL EXISTENCE,DECAY AND BLOWUP OF THE SOLUTION[J]. Abderrahmane ZARA,Nasser-eddine TATAR,Salem ABDELMALEK. Acta Mathematica Scientia. 2013(01)
[2]   On a system of nonlinear wave equations with Balakrishnan–Taylor damping [J].
Chunlai Mu ;
Jie Ma .
Zeitschrift für angewandte Mathematik und Physik, 2014, 65 :91-113
[3]  
General decay and blow-up of solutions for a viscoelastic equation with nonlinear boundary damping-source interactions[J] . Shun-Tang Wu. Zeitschrift für angewandte Mathematik und Physik . 2012 (1)
[4]  
On convexity for energy decay rates of a viscoelastic equation with boundary feedback[J] . Salim A. Messaoudi,Muhammad I. Mustafa. Nonlinear Analysis . 2010 (9)
[5]  
General decay of solutions of a viscoelastic equation[J] . Salim A. Messaoudi. Journal of Mathematical Analysis and Applications . 2007 (2)
[6]  
Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping–source interaction[J] . Marcelo M. Cavalcanti,Valéria N. Domingos Cavalcanti,Irena Lasiecka. Journal of Differential Equations . 2007 (2)
[7]  
General decay rate estimates for viscoelastic dissipative systems[J] . M.M. Cavalcanti,V.N. Domingos Cavalcanti,P. Martinez. Nonlinear Analysis . 2006 (1)
[8]   Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems [J].
Alabau-Boussouira, F .
APPLIED MATHEMATICS AND OPTIMIZATION, 2005, 51 (01) :61-105
[9]  
Inertial manifolds and stabilization of nonlinear beam equationswith Balakrishnan-Taylor damping[J] . Yuncheng You. Abstract and Applied Analysis . 1996 (1)
[10]  
Graduate Texts in Mathematics .2 Arnold VI. New York;Heidelberg;Berlin . 1978