Let G=Gn,p be a binomial random graph with n vertices and edge probability p=p(n),and f be a nonnegative integer-valued function defined on V(G) such that 0<a≤f(x)≤b<np-2np ㏒n for every x ∈V(G). An fractional f-indicator function is an function h that assigns to each edge of a graph G a number h(e) in [0,1] so that for each vertex x,we have dh G(x)=f(x),where dh G(x) = x∈e h(e) is the fractional degree of x in G. Set Eh = {e:e ∈E(G) and h(e)=0}.If Gh is a spanning subgraph of G such that E(Gh)=Eh,then Gh is called an fractional f-factor of G. In this paper,we prove that for any binomial random graph Gn,p with p≥n-23,almost surely Gn,p contains an fractional f-factor.