A Few-Shot Learning-Based Automatic Modulation Classification Method for Internet of Things

被引:0
|
作者
Aer Sileng
Qi Chenhao
机构
[1] SchoolofInformationScienceandEngineering,SoutheastUniversity
关键词
D O I
暂无
中图分类号
TN929.5 [移动通信]; TP393 [计算机网络];
学科分类号
081201 ; 1201 ;
摘要
Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment, we consider fewshot learning-based automatic modulation classification(AMC) to improve its reliability. A data enhancement module(DEM) is designed by a convolutional layer to supplement frequency-domain information as well as providing nonlinear mapping that is beneficial for AMC. Multimodal network is designed to have multiple residual blocks, where each residual block has multiple convolutional kernels of different sizes for diverse feature extraction. Moreover, a deep supervised loss function is designed to supervise all parts of the network including the hidden layers and the DEM.Since different model may output different results, cooperative classifier is designed to avoid the randomness of single model and improve the reliability. Simulation results show that this few-shot learning-based AMC method can significantly improve the AMC accuracy compared to the existing methods.
引用
收藏
页码:18 / 29
页数:12
相关论文
共 50 条
  • [31] A load classification method based on data augmentation and few-shot machine learning
    Liu, Haoran
    Li, Huaqiang
    Yu, Xueying
    Wang, Ziyao
    Chen, Yipeng
    IET RENEWABLE POWER GENERATION, 2024,
  • [32] MsmcNet: A Modular Few-Shot Learning Framework for Signal Modulation Classification
    Wang, Yiran
    Bai, Jing
    Xiao, Zhu
    Zhou, Huaji
    Jiao, Licheng
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 3789 - 3801
  • [33] Few-Shot Image Classification Method Based on Visual Language Prompt Learning
    Li B.
    Wang X.
    Teng S.
    Lyu X.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2024, 47 (02): : 11 - 17
  • [34] Enhanced Prompt Learning for Few-shot Text Classification Method
    Li R.
    Wei Z.
    Fan Y.
    Ye S.
    Zhang G.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2024, 60 (01): : 1 - 12
  • [35] Analogical Learning-Based Few-Shot Class-Incremental Learning
    Li, Jiashuo
    Dong, Songlin
    Gong, Yihong
    He, Yuhang
    Wei, Xing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) : 5493 - 5504
  • [36] Adaptive Prompt Learning-Based Few-Shot Sentiment Analysis
    Zhang, Pengfei
    Chai, Tingting
    Xu, Yongdong
    NEURAL PROCESSING LETTERS, 2023, 55 (06) : 7259 - 7272
  • [37] Few-shot learning-based human behavior recognition model
    Mahalakshmi, V.
    Sandhu, Mukta
    Shabaz, Mohammad
    Keshta, Ismail
    Prasad, K. D. V.
    Kuzieva, Nargiza
    Byeon, Haewon
    Soni, Mukesh
    COMPUTERS IN HUMAN BEHAVIOR, 2024, 151
  • [38] Adaptive Prompt Learning-Based Few-Shot Sentiment Analysis
    Pengfei Zhang
    Tingting Chai
    Yongdong Xu
    Neural Processing Letters, 2023, 55 : 7259 - 7272
  • [39] Automatic Metric Search for Few-Shot Learning
    Zhou, Yuan
    Hao, Jieke
    Huo, Shuwei
    Wang, Boyu
    Ge, Leijiao
    Kung, Sun-Yuan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (07) : 10098 - 10109
  • [40] A Feature Extraction Method Based on Few-shot Learning
    Liu, Sa
    Pang, Shanmin
    Zhu, Li
    Zhao, Jiakun
    2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTER ENGINEERING (ICAICE 2020), 2020, : 528 - 532