On Dense Sequences of Polynomials in Several Variables

被引:0
作者
朱尧辰
机构
[1] Institute of Applied Mathematics
[2] Academia Sinica
关键词
D O I
暂无
中图分类号
学科分类号
摘要
<正> In the present paper a form of generalization of Gelfond's lemma on dense sequences ofpolynomials is proposed.For a set of complex numbers θ,…,θs we define the coefficients gk(θ1,…,θs) (0≤k≤s) and give the relations between them and the transcendental aegrees or thetranscendence types of the field (θ,…,θs) or its subfields.
引用
收藏
页码:329 / 330+332 +332-336
页数:7
相关论文
共 50 条
[21]   EVALUATION METHODS FOR POLYNOMIALS IN SEVERAL VARIABLES [J].
REIMER, M .
NUMERISCHE MATHEMATIK, 1975, 23 (04) :321-336
[22]   On Birkhoff interpolation by polynomials in several variables [J].
Zhu, P .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 85 (02) :263-270
[23]   A generalization of Gottlieb polynomials in several variables [J].
Choi, Junesang .
APPLIED MATHEMATICS LETTERS, 2012, 25 (01) :43-46
[24]   Zero sets of polynomials in several variables [J].
Aron, RM ;
Hájek, P .
ARCHIV DER MATHEMATIK, 2006, 86 (06) :561-568
[25]   A MEASURE FOR POLYNOMIALS IN SEVERAL-VARIABLES [J].
MYERSON, G .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1984, 27 (02) :185-191
[26]   Zero sets of polynomials in several variables [J].
R. M. Aron ;
P. Hájek .
Archiv der Mathematik, 2006, 86 :561-568
[27]   On the Dirichlet characters of polynomials in several variables [J].
Zhang, WP ;
Xu, ZF .
ACTA ARITHMETICA, 2006, 121 (02) :117-124
[28]   A note on Hermite polynomials of several variables [J].
Khan, Mumtaz Ahmad ;
Khan, Abdul Hakim ;
Ahmad, Naeem .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (11) :6385-6390
[29]   Generalized Sylvester Polynomials of in Several Variables [J].
Ozmen, Nejla ;
Soyturk, Sule .
APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2018, 13 (02) :1093-1109
[30]   Monomial orthogonal polynomials of several variables [J].
Xu, Y .
JOURNAL OF APPROXIMATION THEORY, 2005, 133 (01) :1-37