Advances in All-Solid-State Lithium–Sulfur Batteries for Commercialization

被引:0
|
作者
Birhanu Bayissa Gicha [1 ]
Lemma Teshome Tufa [1 ]
Njemuwa Nwaji [2 ]
Xiaojun Hu [3 ]
Jaebeom Lee [4 ]
机构
[1] Research Institute of Materials Chemistry,Chungnam National University
[2] Institute of Fundamental Technological Research,Polish Academy of Sciences
[3] School of Life Sciences,Shanghai University
[4] Department of Chemistry,Chungnam National
关键词
D O I
暂无
中图分类号
TM912 [蓄电池];
学科分类号
摘要
Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies. Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward achieving commercial feasibility. In particular, all-solid-state lithium–sulfur batteries(ASSLSBs) that rely on lithium–sulfur reversible redox processes exhibit immense potential as an energy storage system, surpassing conventional lithium-ion batteries. This can be attributed predominantly to their exceptional energy density, extended operational lifespan, and heightened safety attributes. Despite these advantages, the adoption of ASSLSBs in the commercial sector has been sluggish. To expedite research and development in this particular area, this article provides a thorough review of the current state of ASSLSBs. We delve into an in-depth analysis of the rationale behind transitioning to ASSLSBs, explore the fundamental scientific principles involved, and provide a comprehensive evaluation of the main challenges faced by ASSLSBs. We suggest that future research in this field should prioritize plummeting the presence of inactive substances, adopting electrodes with optimum performance, minimizing interfacial resistance, and designing a scalable fabrication approach to facilitate the commercialization of ASSLSBs.
引用
收藏
页码:217 / 254
页数:38
相关论文
共 50 条
  • [21] Recent Progress in Quasi/All-Solid-State Electrolytes for Lithium-Sulfur Batteries
    Yang, Shichun
    Zhang, Zhengjie
    Lin, Jiayuan
    Zhang, Lisheng
    Wang, Lijing
    Chen, Siyan
    Zhang, Cheng
    Liu, Xinhua
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [22] Sulfide-Based All-Solid-State Lithium–Sulfur Batteries:Challenges and Perspectives
    Xinxin Zhu
    Liguang Wang
    Zhengyu Bai
    Jun Lu
    Tianpin Wu
    Nano-Micro Letters, 2023, 15 (05) : 382 - 392
  • [23] Composite solid electrolytes for all-solid-state lithium batteries
    Dirican, Mahmut
    Yan, Chaoyi
    Zhu, Pei
    Zhang, Xiangwu
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2019, 136 (27-46): : 27 - 46
  • [24] Interface design for all-solid-state lithium batteries
    Wan, Hongli
    Wang, Zeyi
    Zhang, Weiran
    He, Xinzi
    Wang, Chunsheng
    NATURE, 2023, 623 (7988) : 739 - +
  • [25] Interface design for all-solid-state lithium batteries
    Hongli Wan
    Zeyi Wang
    Weiran Zhang
    Xinzi He
    Chunsheng Wang
    Nature, 2023, 623 : 739 - 744
  • [26] Development of materials for all-solid-state lithium batteries
    Machida, N., 2005, Funtai Funamtsu Yakin Kyokai/Japan Soc. of Powder Metallurgy (52):
  • [27] Benchmarking the performance of all-solid-state lithium batteries
    Randau, Simon
    Weber, Dominik A.
    Koetz, Olaf
    Koerver, Raimund
    Braun, Philipp
    Weber, Andre
    Ivers-Tiffee, Ellen
    Adermann, Torben
    Kulisch, Joern
    Zeier, Wolfgang G.
    Richter, Felix H.
    Janek, Juergen
    NATURE ENERGY, 2020, 5 (03) : 259 - 270
  • [28] Interfacial challenges in all-solid-state lithium batteries
    Huang, Yonglin
    Shao, Bowen
    Han, Fudong
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 33
  • [29] Benchmarking the performance of all-solid-state lithium batteries
    Simon Randau
    Dominik A. Weber
    Olaf Kötz
    Raimund Koerver
    Philipp Braun
    André Weber
    Ellen Ivers-Tiffée
    Torben Adermann
    Jörn Kulisch
    Wolfgang G. Zeier
    Felix H. Richter
    Jürgen Janek
    Nature Energy, 2020, 5 : 259 - 270
  • [30] Emerging All-Solid-State Lithium-Sulfur Batteries: Holy Grails for Future Secondary Batteries
    Sun, Yang-Kook
    ACS ENERGY LETTERS, 2024, 9 (10): : 5092 - 5095