一类(3+1)维非线性Jaulent-Miodek分层发展方程的行波解分岔(英文)

被引:0
|
作者
何斌
赵立通
李静
田征
机构
[1] 北京工业大学应用数理学院
关键词
(3+1)维非线性发展方程; 分岔; 行波解; 精确解;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
应用动力系统分岔理论研究一类(3+1)维非线性Jaulent-Miodek分层发展方程的行波解分岔,根据分岔参数的不同值得到非线性变换系统的相图.通过计算得到(3+1)维非线性Jaulent-Miodek分层发展方程的精确行波解,包括周期波解、孤立波解、扭波解及反扭波解.
引用
收藏
页码:305 / 314
页数:10
相关论文
共 8 条
  • [1] 一类广义Dullin-Gottwald-Holm方程的行波解分岔(英文)
    范兴华
    李沙沙
    [J]. 上海师范大学学报(自然科学版), 2015, 44 (03) : 237 - 250
  • [2] Periodic wave solutions and solitary wave solutions of generalized modified Boussinesq equation and evolution relationship between both solutions[J] Shaowei Li;Weiguo Zhang;Xiaoshuang Bu Journal of Mathematical Analysis and Applications 2017,
  • [3] Multiple soliton solutions for some (3+1 )-dimensional nonlinear models generated by the Jaulent–Miodek hierarchy[J] Abdul-Majid Wazwaz Applied Mathematics Letters 2012,
  • [4] One method for finding exact solutions of nonlinear differential equations[J] Nikolay A. Kudryashov Communications in Nonlinear Science and Numerical Simulation 2011,
  • [5] Multiple kink solutions and multiple singular kink solutions for ( 2 + 1 ) -dimensional nonlinear models generated by the Jaulent–Miodek hierarchy[J] Abdul-Majid Wazwaz Physics Letters A 2009,
  • [6] Construction of periodic and solitary wave solutions by the extended Jacobi elliptic function expansion method[J] M.A. Abdou;A. Elhanbaly Communications in Nonlinear Science and Numerical Simulation 2006,
  • [7] New kinds of solutions to Gardner equation[J] Zuntao Fu;Shida Liu;Shikuo Liu Chaos; Solitons and Fractals 2003,
  • [8] Research on traveling wave solutions for a class of (3+1)-dimensional nonlinear equation Li J;Li X;Zhang W; Journal of Applied Analysis and Computation 2017,