Improve the performance of interferometer with ultra-cold atoms

被引:0
作者
董翔宇
金圣杰
税鸿冕
彭鹏
周小计
机构
[1] StateKeyLaboratoryofAdvancedOpticalCommunicationSystemsandNetworks,DepartmentofElectronics,PekingUniversity
关键词
D O I
暂无
中图分类号
TH744.3 [];
学科分类号
0803 ;
摘要
Ultra-cold atoms provide ideal platforms for interferometry.The macroscopic matter-wave property of ultra-cold atoms leads to large coherent length and long coherent time,which enable high accuracy and sensitivity to measurement.Here,we review our efforts to improve the performance of the interferometer.We demonstrate a shortcut method for manipulating ultra-cold atoms in an optical lattice.Compared with traditional ones,this shortcut method can reduce the manipulation time by up to three orders of magnitude.We construct a matter-wave Ramsey interferometer for trapped motional quantum states and significantly increase its coherence time by one order of magnitude with an echo technique based on this method.Efforts have also been made to enhance the resolution by multimode scheme.Application of a noise-resilient multi-component interferometer shows that increasing the number of paths could sharpen the peaks in the time-domain interference fringes,which leads to a resolution nearly twice compared with that of a conventional double-path two-mode interferometer.With the shortcut method mentioned above,improvement of the momentum resolution could also be fulfilled,which leads to atomic momentum patterns less than 0.6■ To identify and remove systematic noises,we introduce the methods based on the principal component analysis (PCA) that reduce the noise in detection close to the ■ of the photon-shot noise and separate and identify or even eliminate noises.Furthermore,we give a proposal to measure precisely the local gravity acceleration within a few centimeters based on our study of ultracold atoms in precision measurements.
引用
收藏
页码:58 / 71
页数:14
相关论文
共 77 条
[1]   High-Precision Quantum-Enhanced Gravimetry with a Bose-Einstein Condensate [J].
Szigeti, Stuart S. ;
Nolan, Samuel P. ;
Close, John D. ;
Haine, Simon A. .
PHYSICAL REVIEW LETTERS, 2020, 125 (10)
[2]   Quantum Rotation Sensing with Dual Sagnac Interferometers in an Atom-Optical Waveguide [J].
Moan, E. R. ;
Horne, R. A. ;
Arpornthip, T. ;
Luo, Z. ;
Fallon, A. J. ;
Berl, S. J. ;
Sackett, C. A. .
PHYSICAL REVIEW LETTERS, 2020, 124 (12)
[3]   Probing gravity by holding atoms for 20 seconds [J].
Xu, Victoria ;
Jaffe, Matt ;
Panda, Cristian D. ;
Kristensen, Sofus L. ;
Clark, Logan W. ;
Mueller, Holger .
SCIENCE, 2019, 366 (6466) :745-+
[4]   Asymmetric population of momentum distribution by quasi-periodically driving a triangular optical lattice [J].
Guo, Xinxin ;
Zhang, Wenjun ;
Li, Zhihan ;
Shui, Hongmian ;
Chen, Xuzong ;
Zhou, Xiaoji .
OPTICS EXPRESS, 2019, 27 (20) :27786-27796
[5]   Extraction and identification of noise patterns for ultracold atoms in an optical lattice [J].
Cao, Shuyang ;
Tang, Pengju ;
Guo, Xinxin ;
Chen, Xuzong ;
Zhang, Wei ;
Zhou, Xiaoji .
OPTICS EXPRESS, 2019, 27 (09) :12710-12722
[6]   Optimized fringe removal algorithm for absorption images [J].
Niu, Linxiao ;
Guo, Xinxin ;
Zhan, Yuan ;
Chen, Xuzong ;
Liu, W. M. ;
Zhou, Xiaoji .
APPLIED PHYSICS LETTERS, 2018, 113 (14)
[7]  
Ramsey interferometry with trapped motional quantum states[J] . Dong Hu,Linxiao Niu,Shengjie Jin,Xuzong Chen,Guangjiong Dong,J?rg Schmiedmayer,Xiaoji Zhou.Communications Physics . 2018 (1)
[8]  
Shortcut loading a Bose–Einstein condensate into an optical lattice[J] . Xiaoji Zhou,Shengjie Jin,J?rg Schmiedmayer.New Journal of Physics . 2018 (5)
[9]   A Fermi-degenerate three-dimensional optical lattice clock [J].
Campbell, S. L. ;
Hutson, R. B. ;
Marti, G. E. ;
Goban, A. ;
Oppong, N. Darkwah ;
McNally, R. L. ;
Sonderhouse, L. ;
Robinson, J. M. ;
Zhang, W. ;
Bloom, B. J. ;
Ye, J. .
SCIENCE, 2017, 358 (6359) :90-93
[10]   A cold-atom Fermi-Hubbard antiferromagnet [J].
Azurenko, Anton M. ;
Chiu, Christie S. ;
Ji, Geoffrey ;
Parsons, Maxwell F. ;
Kanasz-Nagy, Marton ;
Schmidt, Richard ;
Grusdt, Fabian ;
Demler, Eugene ;
Greif, Daniel ;
Greiner, Markus .
NATURE, 2017, 545 (7655) :462-+