Polaron mobility modulation by bandgap engineering in black phase α-FAPbI3

被引:2
|
作者
Chunwei Wang [1 ,2 ,3 ,4 ]
Zeyu Zhang [1 ,3 ]
Zhuang Xiong [5 ]
Xingyu Yue [1 ,3 ]
Bo Zhang [5 ]
Tingyuan Jia [1 ]
Zhengzheng Liu [1 ,3 ]
Juan Du [1 ,3 ]
Yuxin Leng [1 ,2 ,3 ,4 ]
Kuan Sun [5 ]
Ruxin Li [1 ,2 ]
机构
[1] State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM),Chinese Academy of Sciences (CAS)
[2] School of Physical Science and Technology, Shanghai Tech University
[3] School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences
[4] Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences
[5] MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Perovskites; Polaron; Mobility; Terahertz spectroscopy;
D O I
暂无
中图分类号
TM914.4 [太阳能电池]; TB34 [功能材料];
学科分类号
080501 ; 080502 ;
摘要
Lead halide hybrid perovskites(LHP) have emerged as one of the most promising photovoltaic materials for their remarkable solar energy conversion ability. The transportation of the photoinduced carriers in LHP could screen the defect recombination with the help of the large polaron formation. However, the physical insight of the relationship between the superior optical-electronic performance of perovskite and its polaron dynamics related to the electron-lattice strong coupling induced by the substitution engineering is still lack of investigation. Here, the bandgap modulated thin films of α-FAPbI3with different element substitution is investigated by the time resolved Terahertz spectroscopy. We find the polaron recombination dynamics could be prolonged in LHP with a relatively smaller bandgap, even though the formation of polaron will not be affected apparently. Intuitively, the large polaron mobility in(FAPb I3)0.95(MAPbI3)0.05thin film is ~30% larger than that in(FAPb I3)0.85(MAPbBr3)0.15.The larger mobility in(FAPb I3)0.95(MAPb I3)0.05could be assigned to the slowing down of the carrier scattering time.Therefore, the physical origin of the higher carrier mobility in the(FAPb I3)0.95(MAPbI3)0.05should be related with the lattice distortion and enhanced electron–phonon coupling induced by the substitution.In addition,(FAPbI3)0.95(MAPbI3)0.05will lose fewer active carriers during the polaron cooling process than that in(FAPb I3)0.85(MAPbBr3),indicating lower thermal dissipation in(FAPbI3)0.95(MAPbI3)0.05.Our results suggest that besides the smaller bandgap, the higher polaron mobility improved by the substitution engineering in α-FAPbI3can also be an important factor for the high PCE of the black phase α-FAPbI3based solar cell devices.
引用
收藏
页码:175 / 180
页数:6
相关论文
共 50 条
  • [21] Anion–π interactions suppress phase impurities in FAPbI3 solar cells
    Zijian Huang
    Yang Bai
    Xudan Huang
    Jiatong Li
    Yuetong Wu
    Yihua Chen
    Kailin Li
    Xiuxiu Niu
    Nengxu Li
    Guilin Liu
    Yu Zhang
    Huachao Zai
    Qi Chen
    Ting Lei
    Lifen Wang
    Huanping Zhou
    Nature, 2023, 623 : 531 - 537
  • [22] Ligand exchange engineering of FAPbI3 perovskite quantum dots for solar cells
    Wentao Fan
    Qiyuan Gao
    Xinyi Mei
    Donglin Jia
    Jingxuan Chen
    Junming Qiu
    Qisen Zhou
    Xiaoliang Zhang
    Frontiers of Optoelectronics, 2022, 15
  • [23] Aqueously synthesized δ-phase FAPbI3 for efficient perovskite solar cells
    Pan, Yining
    Wang, Yonghao
    Deng, Mingxin
    Zeng, Qiang
    Li, Linhong
    Liao, Xiang
    Zhang, Mingjun
    Wang, Wei
    Xie, Feng
    Liu, Fangyang
    SCIENCE CHINA-MATERIALS, 2024, : 1621 - 1630
  • [24] Ligand exchange engineering of FAPbI3 perovskite quantum dots for solar cells
    Fan, Wentao
    Gao, Qiyuan
    Mei, Xinyi
    Jia, Donglin
    Chen, Jingxuan
    Qiu, Junming
    Zhou, Qisen
    Zhang, Xiaoliang
    FRONTIERS OF OPTOELECTRONICS, 2022, 15 (01)
  • [25] Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells
    Jaeki Jeong
    Minjin Kim
    Jongdeuk Seo
    Haizhou Lu
    Paramvir Ahlawat
    Aditya Mishra
    Yingguo Yang
    Michael A. Hope
    Felix T. Eickemeyer
    Maengsuk Kim
    Yung Jin Yoon
    In Woo Choi
    Barbara Primera Darwich
    Seung Ju Choi
    Yimhyun Jo
    Jun Hee Lee
    Bright Walker
    Shaik M. Zakeeruddin
    Lyndon Emsley
    Ursula Rothlisberger
    Anders Hagfeldt
    Dong Suk Kim
    Michael Grätzel
    Jin Young Kim
    Nature, 2021, 592 : 381 - 385
  • [26] Crystallization dynamics and stabilization of FAPbI3 single-phase perovskite
    Zuo, Weiwei
    Fu, Weifei
    Wang, Ke
    Das, Chittarajan
    Byranvand, Mahdi Malekshahi
    Wang, Kai-Li
    Chaudhary, Aditya
    Lim, Jaekeun
    Li, Meng
    Saliba, Michael
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (04) : 1407 - 1415
  • [27] Efficient and stable pure ?-phase FAPbI3 perovskite solar cells with a dual engineering strategy: Additive and dimensional engineering approaches
    Kareem, Sahira Hassan
    Elewi, Muntaha Harjan
    Naji, Amel Muhson
    Ahmed, Duha S.
    Mohammed, Mustafa K. A.
    CHEMICAL ENGINEERING JOURNAL, 2022, 443
  • [28] Efficient and stable pure α-phase FAPbI3 perovskite solar cells with a dual engineering strategy: Additive and dimensional engineering approaches
    Hassan Kareem, Sahira
    Harjan Elewi, Muntaha
    Muhson Naji, Amel
    Ahmed, Duha S.
    K. A. Mohammed, Mustafa
    Chemical Engineering Journal, 2022, 443
  • [29] Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells
    Jeong, Jaeki
    Kim, Minjin
    Seo, Jongdeuk
    Lu, Haizhou
    Ahlawat, Paramvir
    Mishra, Aditya
    Yang, Yingguo
    Hope, Michael A.
    Eickemeyer, Felix T.
    Kim, Maengsuk
    Yoon, Yung Jin
    Choi, In Woo
    Darwich, Barbara Primera
    Choi, Seung Ju
    Jo, Yimhyun
    Lee, Jun Hee
    Walker, Bright
    Zakeeruddin, Shaik M.
    Emsley, Lyndon
    Rothlisberger, Ursula
    Hagfeldt, Anders
    Kim, Dong Suk
    Graetzel, Michael
    Kim, Jin Young
    NATURE, 2021, 592 (7854) : 381 - +
  • [30] In Situ Study of Purified Phase Transition Path for α-FAPbI3 Crystallization
    Wang, Xianjin
    Zheng, Guanhaojie
    Gao, Feng
    Li, Liang
    Luo, Chao
    Zhan, Changling
    Li, Yang
    Ma, Yingzhuang
    Gao, Xingyu
    Zhou, Huanping
    Zhao, Qing
    ADVANCED ENERGY MATERIALS, 2024, 14 (14)