Promotion effects of alkali metals on iron molybdate catalysts for CO2 catalytic hydrogenation

被引:3
作者
Yong Zhou [1 ]
Aliou Sadia Traore [2 ]
Deizi V.Peron [1 ]
Alan J.Barrios [1 ]
Sergei A.Chernyak [1 ]
Massimo Corda [1 ]
Olga V.Safonova [3 ]
Achim Iulian Dugulan [4 ]
Ovidiu Ersen [2 ]
Mirella Virginie [1 ]
Vitaly V.Ordomsky [1 ]
Andrei Y.Khodakov [1 ]
机构
[1] University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide
[2] IPCMS, UMR 7504 CNRS, Université de Strasbourg
[3] PSI
[4] Fundamental Aspects of Materials and Energy Group, Delft University of Technology
关键词
D O I
暂无
中图分类号
TQ426 [催化剂(触媒)]; X701 [废气的处理与利用];
学科分类号
080502 ; 081705 ; 083002 ;
摘要
CO2hydrogenation is an attractive way to store and utilize carbon dioxide generated by industrial processes, as well as to produce valuable chemicals from renewable and abundant resources. Iron catalysts are commonly used for the hydrogenation of carbon oxides to hydrocarbons. Iron-molybdenum catalysts have found numerous applications in catalysis, but have been never evaluated in the CO2hydrogenation.In this work, the structural properties of iron-molybdenum catalysts without and with a promoting alkali metal(Li, Na, K, Rb, or Cs) were characterized using X-ray diffraction, hydrogen temperatureprogrammed reduction, CO2temperature-programmed desorption, in-situ57Fe Mossbauer spectroscopy and operando X-ray adsorption spectroscopy. Their catalytic performance was evaluated in the CO2hydrogenation. During the reaction conditions, the catalysts undergo the formation of an iron(Ⅱ) molybdate structure, accompanied by a partial reduction of molybdenum and carbidization of iron. The rate of CO2conversion and product selectivity strongly depend on the promoting alkali metals, and electronegativity was identified as an important factor affecting the catalytic performance. Higher CO2conversion rates were observed with the promoters having higher electronegativity, while low electronegativity of alkali metals favors higher light olefin selectivity.
引用
收藏
页码:291 / 300
页数:10
相关论文
共 24 条
[1]   一种新γ相氧化铝负载的铁铝双金属催化剂用于反向水煤气转化反应(英文) [J].
Abolfazl Gharibi Kharaji ;
Ahmad Shariati ;
Mohammad Ali Takassi .
ChineseJournalofChemicalEngineering, 2013, 21 (09) :1007-1014
[2]   Identifying Performance Descriptors in CO2 Hydrogenation over Iron-Based Catalysts Promoted with Alkali Metals [J].
Yang, Qingxin ;
Kondratenko, Vita A. ;
Petrov, Sergey A. ;
Doronkin, Dmitry E. ;
Saraci, Erisa ;
Lund, Henrik ;
Arinchtein, Aleks ;
Kraehnert, Ralph ;
Skrypnik, Andrey S. ;
Matvienko, Alexander A. ;
Kondratenko, Evgenii, V .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (22)
[3]  
Active phases for high temperature Fischer-Tropsch synthesis in the silica supported iron catalysts promoted with antimony and tin.[J].Peron Deizi V.;Barrios Alan J.;Taschin Alan;Dugulan Iulian;Marini Carlo;Gorni Giulio;Moldovan Simona;Koneti Siddardha;Wojcieszak Robert;Thybaut Joris W.;Virginie Mirella;Khodakov Andrei Y..Applied Catalysis B: Environmental.2021,
[4]   Carbon-based catalysts for Fischer-Tropsch synthesis [J].
Chen, Yanping ;
Wei, Jiatong ;
Duyar, Melis S. ;
Ordomsky, Vitaly V. ;
Khodakov, Andrei Y. ;
Liu, Jian .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (04) :2337-2366
[5]   Industrial carbon dioxide capture and utilization: state of the art and future challenges [J].
Gao, Wanlin ;
Liang, Shuyu ;
Wang, Rujie ;
Jiang, Qian ;
Zhang, Yu ;
Zheng, Qianwen ;
Xie, Bingqiao ;
Toe, Cui Ying ;
Zhu, Xuancan ;
Wang, Junya ;
Huang, Liang ;
Gao, Yanshan ;
Wang, Zheng ;
Jo, Changbum ;
Wang, Qiang ;
Wang, Lidong ;
Liu, Yuefeng ;
Louis, Benoit ;
Scott, Jason ;
Roger, Anne-Cecile ;
Amal, Rose ;
Heh, Hong ;
Park, Sang-Eon .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (23) :8584-8686
[6]   Structural dynamics of an iron molybdate catalyst under redox cycling conditions studied with in situ multi edge XAS and XRD [J].
Gaur, Abhijeet ;
Stehle, Matthias ;
Raun, Kristian Viegaard ;
Thrane, Joachim ;
Jensen, Anker Degn ;
Grunwaldt, Jan-Dierk ;
Hoj, Martin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (20) :11713-11723
[7]   Progress and Perspective for In Situ Studies of CO2 Reduction [J].
Li, Xiaodong ;
Wang, Shumin ;
Li, Li ;
Sun, Yongfu ;
Xie, Yi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (21) :9567-9581
[8]   Mobility and versatility of the liquid bismuth promoter in the working iron catalysts for light olefin synthesis from syngas [J].
Gu, Bang ;
Peron, Deizi, V ;
Barrios, Alan J. ;
Bahri, Mounib ;
Ersen, Ovidiu ;
Vorokhta, Mykhailo ;
Smid, Bretislav ;
Banerjee, Dipanjan ;
Virginie, Mirella ;
Marceau, Eric ;
Wojcieszak, Robert ;
Ordomsky, Vitaly V. ;
Khodakov, Andrei Y. .
CHEMICAL SCIENCE, 2020, 11 (24) :6167-6182
[9]   The impacts of ocean acidification on marine trace gases and the implications for atmospheric chemistry and climate [J].
Hopkins, Frances E. ;
Suntharalingam, Parvadha ;
Gehlen, Marion ;
Andrews, Oliver ;
Archer, Stephen D. ;
Bopp, Laurent ;
Buitenhuis, Erik ;
Dadou, Isabelle ;
Duce, Robert ;
Goris, Nadine ;
Jickells, Tim ;
Johnson, Martin ;
Keng, Fiona ;
Law, Cliff S. ;
Lee, Kitack ;
Liss, Peter S. ;
Lizotte, Martine ;
Malin, Gillian ;
Murrell, J. Colin ;
Naik, Hema ;
Rees, Andrew P. ;
Schwinger, Joerg ;
Williamson, Philip .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2237)
[10]   Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation [J].
Xiaoben Zhang ;
Shaobo Han ;
Beien Zhu ;
Guanghui Zhang ;
Xiaoyan Li ;
Yi Gao ;
Zhaoxuan Wu ;
Bing Yang ;
Yuefeng Liu ;
Walid Baaziz ;
Ovidiu Ersen ;
Meng Gu ;
Jeffrey T. Miller ;
Wei Liu .
Nature Catalysis, 2020, 3 :411-417