Stochastic gravitational wave background due to gravitational wave memory

被引:0
|
作者
Zhi-Chao Zhao [1 ,2 ]
Zhoujian Cao [1 ,2 ,3 ]
机构
[1] Institute for Frontiers in Astronomy and Astrophysics, Beijing Normal University
[2] Department of Astronomy, Beijing Normal University
[3] School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
P142.84 []; O412.1 [相对论];
学科分类号
摘要
Gravitational wave memory is an important prediction of general relativity, which has not been detected yet. Amounts of memory events can form a stochastic gravitational wave memory background. Here we find that memory background can be described as a Brownian motion in the condition that the observation time is longer than the averaged time interval between two successive memory events. We investigate, for the first time, the memory background of binary black hole coalescences. We only consider the spectrum of the memory background for a relatively low frequency range. So we can use the step function to approximate the waveform for each memory event. Then we find that the spectrum is a power law with index –2. And the amplitude of the power law spectrum depends on and only on the merger rate of the binary black holes. Consequently, the memory background not only provides a brand new means to detect gravitational wave memory but also opens a new window to explore the event rate of binary black hole mergers and the gravity theory. Space-based detectors are ideal to detect the gravitational wave memory background which corresponds to supermassive binary black holes. Since gravitational wave memory is only sensitive to the merger stage of binary black hole coalescence, the memory background will be an ideal probe of the famous final parsec problem.
引用
收藏
页码:136 / 143
页数:8
相关论文
共 50 条
  • [41] ET sensitivity to the anisotropic Stochastic Gravitational Wave Background
    Mentasti, Giorgio
    Peloso, Marco
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (03):
  • [42] Resonant gravitational wave antennas for stochastic background measurements
    Astone, P
    Pallottino, GV
    Pizzella, G
    CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (08) : 2019 - 2030
  • [43] Detecting the stochastic gravitational wave background with the TianQin detector
    Cheng, Jun
    Li, En-Kun
    Hu, Yi-Ming
    Liang, Zheng-Cheng
    Zhang, Jian-dong
    Mei, Jianwei
    PHYSICAL REVIEW D, 2022, 106 (12)
  • [44] Gravitational wave memory produced by cosmic background radiation
    Cao, Zhoujian
    He, Xiaokai
    Zhao, Zhi-Chao
    PHYSICS LETTERS B, 2023, 847
  • [45] Angular resolution of the search for anisotropic stochastic gravitational-wave background with terrestrial gravitational-wave detectors
    Floden, Erik
    Mandic, Vuk
    Matas, Andrew
    Tsukada, Leo
    PHYSICAL REVIEW D, 2022, 106 (02)
  • [46] Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers
    Mandic, Vuk
    Bird, Simeon
    Cholis, Ilias
    PHYSICAL REVIEW LETTERS, 2016, 117 (20)
  • [47] Systematic study of the stochastic gravitational-wave background due to stellar core collapse
    Crocker, K.
    Prestegard, T.
    Mandic, V.
    Regimbau, T.
    Olive, K.
    Vangioni, E.
    PHYSICAL REVIEW D, 2017, 95 (06)
  • [48] Model of the stochastic gravitational-wave background due to core collapse to black holes
    Crocker, K.
    Mandic, V.
    Regimbau, T.
    Belczynski, K.
    Gladysz, W.
    Olive, K.
    Prestegard, T.
    Vangioni, E.
    PHYSICAL REVIEW D, 2015, 92 (06):
  • [49] Primordial gravitational waves of big bounce cosmology in light of stochastic gravitational wave background
    Li, Changhong
    PHYSICAL REVIEW D, 2024, 110 (08)
  • [50] Searching for a stochastic background of gravitational waves with the laser interferometer gravitational-wave observatory
    Abbott, B.
    Abbott, R.
    Adhikari, R.
    Agresti, J.
    Ajith, P.
    Allen, B.
    Amin, R.
    Anderson, S. B.
    Anderson, W. G.
    Araya, M.
    Armandula, H.
    Ashley, M.
    Aston, S.
    Aulbert, C.
    Babak, S.
    Ballmer, S.
    Barish, B. C.
    Barker, C.
    Barker, D.
    Barr, B.
    Barriga, P.
    Barton, M. A.
    Bayer, K.
    Belczynski, K.
    Betzwieser, J.
    Beyersdorf, P.
    Bhawal, B.
    Bilenko, I. A.
    Billingsley, G.
    Black, E.
    Blackburn, K.
    Blackburn, L.
    Blair, D.
    Bland, B.
    Bogue, L.
    Bork, R.
    Bose, S.
    Brady, P. R.
    Braginsky, V. B.
    Brau, J. E.
    Brooks, A.
    Brown, D. A.
    Bullington, A.
    Bunkowski, A.
    Buonanno, A.
    Burman, R.
    Busby, D.
    Byer, R. L.
    Cadonati, L.
    Cagnoli, G.
    ASTROPHYSICAL JOURNAL, 2007, 659 (02): : 918 - 930