3D printing biomimetic materials and structures for biomedical applications

被引:0
|
作者
Yizhen Zhu [1 ]
Dylan Joralmon [1 ]
Weitong Shan [2 ]
Yiyu Chen [3 ]
Jiahui Rong [3 ]
Hanyu Zhao [3 ]
Siqi Xiao [2 ]
Xiangjia Li [1 ]
机构
[1] 不详
[2] School for Engineering of Matter, Transport and Energy,Arizona State University
[3] 不详
[4] Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California
[5] Department of Aerospace and Mechanical Engineering,Viterbi School of Engineering, University of Southern California
[6] 不详
关键词
D O I
暂无
中图分类号
R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Over millions of years of evolution, nature has created organisms with overwhelming performances due to their unique materials and structures, providing us with valuable inspirations for the development of next-generation biomedical devices. As a promising new technology, 3D printing enables the fabrication of multiscale, multi-material, and multi-functional threedimensional(3D) biomimetic materials and structures with high precision and great flexibility. The manufacturing challenges of biomedical devices with advanced biomimetic materials and structures for various applications were overcome with the flourishing development of 3D printing technologies. In this paper, the state-of-the-art additive manufacturing of biomimetic materials and structures in the field of biomedical engineering were overviewed. Various kinds of biomedical applications,including implants, lab-on-chip, medicine, microvascular network, and artificial organs and tissues, were respectively discussed. The technical challenges and limitations of biomimetic additive manufacturing in biomedical applications were further investigated, and the potential solutions and intriguing future technological developments of biomimetic 3D printing of biomedical devices were highlighted.
引用
收藏
页码:405 / 428
页数:24
相关论文
共 50 条
  • [11] Biomedical Applications of Metal 3D Printing
    Velásquez-García, Luis Fernando
    Kornbluth, Yosef
    Annual Review of Biomedical Engineering, 2021, 23 : 307 - 338
  • [12] Biomedical Applications of Metal 3D Printing
    Velasquez-Garcia, Luis Fernando
    Kornbluth, Yosef
    ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, VOL 23, 2021, 2021, 23 : 307 - 338
  • [13] 3D Printing Magnetic Actuators for Biomimetic Applications
    Cao, Xufeng
    Xuan, Shouhu
    Sun, Shuaishuai
    Xu, Zhenbang
    Li, Jun
    Gong, Xinglong
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (25) : 30127 - 30136
  • [14] Polymers for 3D printing in biomedical engineering applications
    Desai, Harsh
    Shah, Nimish
    Saiyad, Mamta
    Dwivedi, Ankur
    Joshipura, Milind
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 : 1870 - 1880
  • [15] Nanomaterial integrated 3D printing for biomedical applications
    Zhang, Liwen
    Forgham, Helen
    Shen, Ao
    Wang, Jiafan
    Zhu, Jiayuan
    Huang, Xumin
    Tang, Shi-Yang
    Xu, Chun
    Davis, Thomas P.
    Qiao, Ruirui
    JOURNAL OF MATERIALS CHEMISTRY B, 2022, 10 (37) : 7473 - 7490
  • [16] 3D Printing of Silk Fibroin for Biomedical Applications
    Wang, Qiusheng
    Han, Guocong
    Yan, Shuqin
    Zhang, Qiang
    MATERIALS, 2019, 12 (03)
  • [17] Electrohydrodynamic jet 3D printing in biomedical applications
    Wu, Yang
    ACTA BIOMATERIALIA, 2021, 128 : 21 - 41
  • [18] Chitosan hydrogels in 3D printing for biomedical applications
    Rajabi, Mina
    McConnell, Michelle
    Cabral, Jaydee
    Ali, M. Azam
    CARBOHYDRATE POLYMERS, 2021, 260 (260)
  • [19] 3D printing for drug delivery and biomedical applications
    Beg, Sarwar
    Almalki, Waleed H.
    Malik, Arshi
    Farhan, Mohd
    Aatif, Mohammad
    Rahman, Ziyaur
    Alruwaili, Nabil K.
    Alrobaian, Majed
    Tarique, Mohammed
    Rahman, Mahfoozur
    DRUG DISCOVERY TODAY, 2020, 25 (09) : 1668 - 1681
  • [20] 3D printing of biomaterials for biomedical applications: a review
    Bhatti, S. S.
    Singh, Jasvinder
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2023,