Transition metal-based single-atom catalysts(TM-SACs);rising materials for electrochemical CO2 reduction

被引:22
|
作者
Bishnupad Mohanty [1 ]
Suddhasatwa Basu [1 ]
Bikash Kumar Jena [1 ,2 ]
机构
[1] Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology
[2] Academy of Scientific & Innovative Research (AcSIR)
关键词
D O I
暂无
中图分类号
TQ426 [催化剂(触媒)]; X701 [废气的处理与利用];
学科分类号
080502 ; 081705 ; 083002 ;
摘要
The continuous increase of global atmospheric COconcentrations brutally damages our environment. A series of methods have been developed to convert COto valuable fuels and value-added chemicals to maintain the equilibrium of carbon cycles. The electrochemical COreduction reaction(CORR) is one of the promising methods to produce fuels and chemicals, and it could offer sustainable paths to decrease carbon intensity and support renewable energy. Thus, significant research efforts and highly efficient catalysts are essential for converting COinto other valuable chemicals and fuels. Transition metal-based single atoms catalysts(TM-SACs) have recently received much attention and offer outstanding electrochemical applications with high activity and selectivity opportunities. By taking advantage of both heterogeneous and homogeneous catalysts, TM-SACs are the new rising star for electrochemical conversion of COto the value-added product with high selectivity. In recent years, enormous research effort has been made to synthesize different TM-SACs with different M–Nxsites and study the electrochemical conversion of COto CO. This review has discussed the development and characterization of different TMSACs with various catalytic sites, fundamental understanding of the electrochemical process in CORR,intrinsic catalytic activity, and molecular strategics of SACs responsible for CORR. Furthermore, we extensively review previous studies on 1 st-row transition metals TM-SACs(Ni, Co, Fe, Cu, Zn, Sn) and dual-atom catalysts(DACs) utilized for electrochemical COconversions and highlight the opportunities and challenges.
引用
收藏
页码:444 / 471
页数:28
相关论文
共 50 条
  • [41] Computational Study of Electrochemical CO2 Reduction on 2D Graphitic Carbon Nitride Supported Single-Atom (Al and P) Catalysts (SACs)
    Wijesingha, Manoj
    Mo, Yirong
    CHEMPHYSCHEM, 2025, 26 (06)
  • [42] General Synthetic Strategy to Ordered Mesoporous Carbon Catalysts with Single-Atom Metal Sites for Electrochemical CO2 Reduction
    Luo, Zhicheng
    Yin, Zhouyang
    Yu, Jiaqi
    Yan, Yu
    Hu, Bing
    Nie, Renfeng
    Kolln, Anna F.
    Wu, Xun
    Behera, Ranjan K.
    Chen, Minda
    Zhou, Lin
    Liu, Fudong
    Wang, Bin
    Huang, Wenyu
    Zhang, Sen
    Qi, Long
    SMALL, 2022, 18 (16)
  • [43] Electrochemical Reduction of CO2 via Single-Atom Catalysts Supported on α-In2Se3
    Yang, Yun
    Liu, Shixi
    Fu, Gang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (26): : 6110 - 6118
  • [44] Single-Atom Catalysts on Covalent Organic Frameworks for CO2 Reduction
    Wang, Rui
    Yuan, Yufei
    Bang, Ki-Taek
    Kim, Yoonseob
    ACS MATERIALS AU, 2023, 3 (01): : 28 - 36
  • [45] CO2 reduction on single-atom Ir catalysts with chemical functionalization
    Lin, Zheng-Zhe
    Li, Xi-Mei
    Chen, Xin-Wei
    Chen, Xi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (06) : 3733 - 3740
  • [46] Heterogeneous Single-Atom Catalysts for Electrochemical CO2Reduction Reaction
    Li, Minhan
    Wang, Haifeng
    Luo, Wei
    Sherrell, Peter C.
    Chen, Jun
    Yang, Jianping
    ADVANCED MATERIALS, 2020, 32 (34)
  • [47] Recent Advances on Single-Atom Catalysts for Photocatalytic CO2 Reduction
    Shang, Ziang
    Feng, Xueting
    Chen, Guanzhen
    Qin, Rong
    Han, Yunhu
    SMALL, 2023, 19 (48)
  • [48] Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts
    Sudarshan Vijay
    Wen Ju
    Sven Brückner
    Sze-Chun Tsang
    Peter Strasser
    Karen Chan
    Nature Catalysis, 2021, 4 : 1024 - 1031
  • [49] Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts
    Vijay, Sudarshan
    Ju, Wen
    Bruckner, Sven
    Tsang, Sze-Chun
    Strasser, Peter
    Chan, Karen
    NATURE CATALYSIS, 2021, 4 (12) : 1024 - 1031
  • [50] The intrinsic activity descriptor of TM-N3-C single-atom catalysts for electrochemical CO2 reduction: a DFT study
    Wang, Linmeng
    Liu, Zhiyuan
    Li, Rushuo
    Gao, Hongyi
    Yang, Ping
    Wang, Wei
    Xue, Xiangdong
    Feng, Shihao
    Yu, Lingjing
    Wang, Ge
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (45) : 24836 - 24853