Zero-valent iron doped carbons readily developed from sewage sludge for lead removal from aqueous solution

被引:6
|
作者
Yiming Su [1 ]
Xiaoya Sun [1 ]
Xuefei Zhou [1 ]
Chaomeng Dai [1 ,2 ]
Yalei Zhang [1 ,3 ]
机构
[1] State Key Laboratory of Pollution Control and Resources Reuse,Tongji University
[2] College of Civil Engineering,Tongji University
[3] Key Laboratory of Yangtze Water Environment for Ministry of Education,Tongji University
关键词
Adsorption Energy-saving Iron-containing porous carbon Lead Sludge;
D O I
暂无
中图分类号
X703 [废水的处理与利用];
学科分类号
摘要
Low-cost but high-efficiency composites of iron-containing porous carbons were prepared using sewage sludge and ferric salts as raw materials. Unlike previous time- and energy-consuming manufacturing procedures, this study shows that pyrolyzing a mixture of sludge and ferric salt can produce suitable composites for lead adsorption. The specific surface area, the total pore volume and the average pore width of the optimal composite were 321 m2/g, 0.25 cm3/g, and 3.17 nm, respectively. X-ray diffraction analysis indicated that ferric salt favored the formation of metallic iron, while Fourier transform infrared spectroscopy revealed the formation of hydroxyl and carboxylic groups. The result of batch tests indicated that the adsorption capacity of carbons activated with ferric salt could be as high as 128.9 mg/g, while that of carbons without activation was 79.1 mg/g. The new manufacturing procedure used in this study could save at least 19.5 k J of energy per gram of activated carbon.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [31] Removal of arsenic from water by zero-valent iron
    Bang, S
    Korfiatis, GP
    Meng, XG
    JOURNAL OF HAZARDOUS MATERIALS, 2005, 121 (1-3) : 61 - 67
  • [32] Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions
    Martin, MJ
    Artola, A
    Balaguer, MD
    Rigola, M
    CHEMICAL ENGINEERING JOURNAL, 2003, 94 (03) : 231 - 239
  • [33] Removal of Cr(Ⅵ) in aqueous solution by amorphous zero-valent iron supported on attapulgite
    Zheng C.-L.
    Lin Z.-S.
    Wang H.
    Wang Z.-X.
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2022, 32 (11): : 3434 - 3447
  • [34] Removal of U(VI) in Aqueous Solution by Nanoscale Zero-Valent Iron(nZVI)
    Li, Xiaoyan
    Zhang, Ming
    Liu, Yibao
    Li, Xun
    Liu, Yunhai
    Hua, Rong
    He, Caiting
    WATER QUALITY EXPOSURE AND HEALTH, 2013, 5 (01): : 31 - 40
  • [35] Removal of trichloroethylene by biochar supported nanoscale zero-valent iron in aqueous solution
    Dong, Haoran
    Zhang, Cong
    Hou, Kunjie
    Cheng, Yujun
    Deng, Junmin
    Jiang, Zhao
    Tang, Lin
    Zeng, Guangming
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 188 : 188 - 196
  • [36] Removal of U(VI) in Aqueous Solution by Nanoscale Zero-Valent Iron(nZVI)
    Xiaoyan Li
    Ming Zhang
    Yibao Liu
    Xun Li
    Yunhai Liu
    Rong Hua
    Caiting He
    Water Quality, Exposure and Health, 2013, 5 : 31 - 40
  • [37] Activated carbons derived from organic sewage sludge for the removal of mercury from aqueous solution
    Zhang, FS
    Itoh, H
    Nriagu, JO
    WASTE MANAGEMENT IN JAPAN, 2004, : 89 - 98
  • [38] Effective removal of Cd(ii) by sludge biochar supported nanoscale zero-valent iron from aqueous solution: characterization, adsorption properties and mechanism
    Dai, Liang
    Han, Tao
    Ma, Gui
    Tian, Xia
    Meng, Kai
    Lei, Zhenle
    Ren, Jun
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (27) : 13184 - 13195
  • [39] Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution
    Dong, Haoran
    Deng, Junmin
    Xie, Yankai
    Zhang, Cong
    Jiang, Zhao
    Cheng, Yujun
    Hou, Kunjie
    Zeng, Guangming
    JOURNAL OF HAZARDOUS MATERIALS, 2017, 332 : 79 - 86
  • [40] Preparation of granular red mud supported zero-valent iron for Crystal Violet removal from aqueous solution
    Du, Yufeng
    Dai, Min
    Cao, Jiangfei
    Liu, Jiwei
    Peng, Changsheng
    DESALINATION AND WATER TREATMENT, 2019, 158 : 353 - 363