Multi-Task Learning with Dynamic Splitting for Open-Set Wireless Signal Recognition

被引:0
|
作者
XU Yujie [1 ]
ZHAO Qingchen [1 ]
XU Xiaodong [1 ]
QIN Xiaowei [1 ]
CHEN Jianqiang [2 ]
机构
[1] University of Science and Technology of China
[2] ZTE Corporation
关键词
D O I
暂无
中图分类号
TN911.7 [信号处理];
学科分类号
0711 ; 080401 ; 080402 ;
摘要
Open-set recognition(OSR) is a realistic problem in wireless signal recognition, which means that during the inference phase there may appear unknown classes not seen in the training phase. The method of intra-class splitting(ICS) that splits samples of known classes to imitate unknown classes has achieved great performance. However, this approach relies too much on the predefined splitting ratio and may face huge performance degradation in new environment. In this paper, we train a multi-task learning(MTL) network based on the characteristics of wireless signals to improve the performance in new scenes. Besides, we provide a dynamic method to decide the splitting ratio per class to get more precise outer samples. To be specific, we make perturbations to the sample from the center of one class toward its adversarial direction and the change point of confidence scores during this process is used as the splitting threshold. We conduct several experiments on one wireless signal dataset collected at 2.4 GHz ISM band by LimeSDR and one open modulation recognition dataset, and the analytical results demonstrate the effectiveness of the proposed method.
引用
收藏
页码:44 / 55
页数:12
相关论文
共 50 条
  • [31] Multimodal Sentiment Recognition With Multi-Task Learning
    Zhang, Sun
    Yin, Chunyong
    Yin, Zhichao
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (01): : 200 - 209
  • [32] Learning Bounds for Open-Set Learning
    Fang, Zhen
    Lu, Jie
    Liu, Anjin
    Liu, Feng
    Zhang, Guangquan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [33] Dynamic Deep Multi-task Learning for Caricature-Visual Face Recognition
    Ming, Zuheng
    Burie, Jean-Christophe
    Luqman, Muhammad Muzzamil
    2019 INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION WORKSHOPS (ICDARW) AND 13TH IAPR INTERNATIONAL WORKSHOP ON GRAPHICS RECOGNITION (GREC 2019), VOL 1, 2019, : 92 - 97
  • [34] Toward Open-Set Face Recognition
    Gunther, Manuel
    Cruz, Steve
    Rudd, Ethan M.
    Boult, Terrance E.
    2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 573 - 582
  • [35] Open-Set Facial Expression Recognition
    Zhang, Yuhang
    Yao, Yue
    Liu, Xuannan
    Qin, Lixiong
    Wang, Wenjing
    Deng, Weihong
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 1, 2024, : 646 - 654
  • [36] Adaptive Dynamic Search for Multi-Task Learning
    Kim, Eunwoo
    APPLIED SCIENCES-BASEL, 2022, 12 (22):
  • [37] OPEN-SET RECOGNITION VIA AUGMENTATION-BASED SIMILARITY LEARNING
    Esmaeilpour, Sepideh
    Shu, Lei
    Liu, Bing
    CONFERENCE ON LIFELONG LEARNING AGENTS, VOL 199, 2022, 199
  • [38] Deep metric learning for open-set human action recognition in videos
    Matheus Gutoski
    André Eugênio Lazzaretti
    Heitor Silvério Lopes
    Neural Computing and Applications, 2021, 33 : 1207 - 1220
  • [39] ORALI: Open-set recognition and active learning for unknown lithology identification
    Zhu, Xinyi
    Zhang, Hongbing
    Ren, Quan
    Rui, Jianwen
    Zhang, Lingyuan
    Zhang, Dailu
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [40] Deep metric learning for open-set human action recognition in videos
    Gutoski, Matheus
    Lazzaretti, Andre Eugenio
    Lopes, Heitor Silverio
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (04): : 1207 - 1220