SnS2@C Hollow Nanospheres with Robust Structural Stability as High?Performance Anodes for Sodium Ion Batteries

被引:0
|
作者
Shuaihui Li [1 ,2 ]
Zhipeng Zhao [1 ,2 ]
Chuanqi Li [1 ,2 ]
Zhongyi Liu [1 ,2 ]
Dan Li [1 ,2 ]
机构
[1] College of Chemistry and Molecular Engineering, Zhengzhou University
[2] Henan Institute of Advanced Technology, Zhengzhou University
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
SnS2@C; Hollow nanospheres; Anode materials; Sodium ion batteries;
D O I
暂无
中图分类号
TM912 [蓄电池]; TB383.1 [];
学科分类号
摘要
Constructing unique and highly stable structures with plenty of electroactive sites in sodium storage materials is a key factor for achieving improved electrochemical properties through favorable sodium ion di usion kinetics. An SnS2@carbon hollow nanospheres(SnS2@C) has been designed and fabricated via a facile solvothermal route, followed by an annealing treatment. The SnS2@C hybrid possesses an ideal hollow structure, rich active sites, a large electrode/electrolyte interface, a shortened ion transport pathway, and, importantly, a bu er space for volume change, generated from the repeated insertion/extraction of sodium ions. These merits lead to the significant reinforcement of structural integrity during electrochemical reactions and the improvement in sodium storage properties, with a high specific reversible capacity of 626.8 mAh g-1after 200 cycles at a current density of 0.2 A g-1and superior high-rate performance(304.4 mAh g-1at 5 A g-1).
引用
收藏
页码:241 / 249
页数:9
相关论文
共 50 条
  • [41] SnS2-CoS2 @C nanocubes as high initial coulombic efficiency and long-life anodes for sodium-ion batteries
    Liu, Xiaoqin
    Xiang, Yu
    Li, Qingping
    Zheng, Qiaoji
    Jiang, Na
    Huo, Yu
    Lin, Dunmin
    ELECTROCHIMICA ACTA, 2021, 387
  • [42] Heterostructured SnS/TiO2@C hollow nanospheres for superior lithium and sodium storage
    Zhang, Yan
    Su, Hang
    Wang, Canpei
    Yang, Dingcheng
    Li, Yongsheng
    Zhang, Wenbo
    Wang, Hongqiang
    Zhang, Jianmin
    Li, Dan
    NANOSCALE, 2019, 11 (27) : 12846 - 12852
  • [43] MoP hollow nanospheres encapsulated in 3D reduced graphene oxide networks as high rate and ultralong cycle performance anodes for sodium-ion batteries
    Yin, Yanyou
    Fan, Lishuang
    Zhang, Yu
    Liu, Nannan
    Zhang, Naiqing
    Sun, Kening
    NANOSCALE, 2019, 11 (15) : 7129 - 7134
  • [44] Facile synthesis of SnS2@g-C3N4 composites as high performance anodes for lithium ion batteries
    Huu, Ha Tran
    Le, Hang T. T.
    Nguyen, Thanh Huong
    Thi, Lan Nguyen
    Vo, Vien
    Im, Won Bin
    APPLIED SURFACE SCIENCE, 2021, 549
  • [45] SnS particles anchored on Ti3C2 nanosheets as high-performance anodes for lithium-ion batteries
    Wang, Ran-cheng
    Pan, Qing-lin
    Luo, Yu-hong
    Yan, Cheng
    He, Zhen-jiang
    Mao, Jing
    Dai, Kehua
    Wu, Xian-wen
    Zheng, Jun-chao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 893
  • [46] Mesoporous Hollow Sb/ZnS@C Core-Shell Heterostructures as Anodes for High-Performance Sodium-Ion Batteries
    Dong, Shihua
    Li, Caixia
    Li, Zhaoqiang
    Zhang, Luyuan
    Yin, Longwei
    SMALL, 2018, 14 (16)
  • [47] SnS hollow nanofibers as anode materials for sodium-ion batteries with high capacity and ultra-long cycling stability
    Jia, Hao
    Dirican, Mahmut
    Sun, Na
    Chen, Chen
    Zhu, Pei
    Yan, Chaoyi
    Dong, Xia
    Du, Zhuang
    Guo, Jiansheng
    Karaduman, Yekta
    Wang, Jiasheng
    Tang, Fangcheng
    Tao, Jinsong
    Zhang, Xiangwu
    CHEMICAL COMMUNICATIONS, 2019, 55 (04) : 505 - 508
  • [48] NiSe2 nanooctahedra as anodes for high-performance sodium-ion batteries
    Fan, Siwei
    Li, Guangda
    Yang, Gai
    Guo, Xu
    Niu, Xinhuan
    NEW JOURNAL OF CHEMISTRY, 2019, 43 (32) : 12858 - 12864
  • [49] Sn4P3-C nanospheres as high capacitive and ultra-stable anodes for sodium ion and lithium ion batteries
    Choi, Jonghyun
    Kim, Won-Sik
    Kim, Kyeong-Ho
    Hong, Seong-Hyeon
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (36) : 17437 - 17443
  • [50] High-performance FeSb-TiC-C nanocomposite anodes for sodium-ion batteries
    Kim, Il Tae
    Allcorn, Eric
    Manthiram, Arumugam
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (25) : 12884 - 12889